U.S. Atlantic and Gulf of Mexico Marine Mammal Stock Assessments - 2011

Gordon T. Waring¹, Elizabeth Josephson¹, Katherine Maze-Foley², and Patricia E. Rosel³, Editors
with contributions from (listed alphabetically)

Kevin Barry², Barbie Byrd⁴, Timothy V.N. Cole¹, Laura Engleby⁵, Carol Fairfield⁶, Lance P. Garrison⁶, Allison Henry¹, Larry Hansen⁴, Jenny Litz⁶, Christopher Orphanides¹, Richard M. Pace¹, Debra L. Palka¹, Marjorie C. Rossman¹, Carrie Sinclair⁵, and Frederick W. Wenzel¹.

¹ National Marine Fisheries Service, 166 Water Street, Woods Hole, MA 02543
² National Marine Fisheries Service, P.O. Drawer 1207, Pascagoula, MS 39568
⁴ National Marine Fisheries Service, 101 Pivers Island, Beaufort, NC 28516
⁵ National Marine Fisheries Service, 263 13th Ave. South, St. Petersburg, FL 33701
⁶ National Marine Fisheries Service, 75 Virginia Beach Drive, Miami, FL 33149

December 2011
Table of Contents

Acknowledgements ... iv
Executive Summary ... v
Introduction .. 1

TABLE 1. A Summary (including footnotes) of Atlantic Marine Mammal Stock Assessment Reports for Stocks of Marine Mammals under NMFS Authority that Occupy Waters under USA Jurisdiction ... 2

North Atlantic Cetacean Species

North Atlantic Right Whale (Eubalaena glacialis): Western Atlantic Stock ... 9
Humpback Whale (Megaptera novaeangliae): Gulf of Maine Stock .. 20
Fin Whale (Balaenoptera physalus): Western North Atlantic Stock .. 31
Sei Whale (Balaenoptera borealis): Nova Scotia Stock .. 37
Minke Whale (Balaenoptera acutorostrata acutorostrata): Canadian East Coast Stock 42
Risso’s Dolphin (Grampus griseus): Western North Atlantic Stock .. 51
Long-Finned Pilot Whale (Globicephala melas): Western North Atlantic Stock 58
Short-finned Pilot Whale (Globicephala macorhynchus): Western North Atlantic Stock 71
White-Sided Dolphin (Lagenorhynchus acutus): Western North Atlantic Stock 82
Short-Beaked Common Dolphin (Delphinus delphis delphis): Western North Atlantic Stock 91
Harbor Porpoise (Phocoena phocoena phocoena): Gulf of Maine/Bay of Fundy Stock 99

North Atlantic Pinniped Species

Harbor Seal: (Phoca vitulina concolor): Western North Atlantic Stock .. 111
Gray Seal: (Halichoerus grypus grypus): Western North Atlantic Stock .. 118
Harp Seal: (Pagophilus groenlandicus): Western North Atlantic Stock .. 125

Gulf of Mexico Cetacean Species

Bryde’s Whale (Balaenoptera edeni): Northern Gulf of Mexico Stock ... 132
Bottlenose Dolphin (Tursiops truncates truncatus): Northern Gulf of Mexico Oceanic Stock 136
Bottlenose Dolphin (Tursiops truncatus truncatus): Northern Gulf of Mexico Bay, Sound, and Estuary Stocks ... 141
Bottlenose Dolphin (Tursiops truncatus truncatus): Barataria Bay Estuarine System Stock 154
Bottlenose Dolphin (Tursiops truncatus truncatus): St. Joseph Bay Stock 159
Bottlenose Dolphin (Tursiops truncatus truncatus): Choctawhatchee Bay Stock 166
Pantropical Spotted Dolphin (Stenella attenuata attenuata): Northern Gulf of Mexico Stock 172

Caribbean Cetacean Species

Bottlenose Dolphin (Tursiops truncatus truncatus): Puerto Rico and U. S. Virgin Islands Stock 177
Cuvier’s Beaked Whale (Ziphius cavirostris): Puerto Rico and U. S. Virgin Islands Stock 183
Short-finned Pilot Whale (*Globicephala macrorhynchus*): Puerto Rico and U. S. Virgin Islands Stock188
Spinner Dolphin (*Stenella longirostris longirostris*): Puerto Rico and U. S. Virgin Islands Stock193
Atlantic Spotted Dolphin (*Stenella frontalis*): Puerto Rico and U. S. Virgin Islands Stock198

APPENDIX I: Estimated serious injury and mortality (SI&M) of Western North Atlantic marine mammals listed by U.S. observed fisheries for 2005-2009. ..203
APPENDIX II: Summary of confirmed human-caused mortality and serious injury (SI) events205
APPENDIX III: Fishery Descriptions ..206
APPENDIX IV: Summary of surveys and abundance estimates ...282
APPENDIX V: Reports not updated in 2011 ..293
APPENDIX VI: Indian Manatee Stock Assessments – Florida and Antilles stocks.295
ACKNOWLEDGMENTS

The authors wish to acknowledge advice, comments and valuable contributions provided by the Northeast Fisheries Science Center Fisheries Sampling Branch; Mendy Garron, Amanda Johnson, David Gouveia, and Allison Rosner of the Northeast Regional Office; Keith Mullin, Aleta Hohn, Elizabeth Tuohy-Sheen, LaGena Fantroy, Ruth Ewing, Antoinette Gorgone, Paul Conn (now at AKFSC), and John Carlson at the Southeast Fisheries Science Center; Jarita Davis and Michael Simpkins of the Northeast Fisheries Science Center; Vicki Cornish, Stacey C. Horstman and Jessica Powell of the Southeast Regional Office; Shannon Bettridge, Tom Eagle, Kristy Long and Carrie Hubard of the NMFS Office of Protected Resources; and Andy Read, Joseph DeAlteris, Don Baltz, James Gilbert, Robert Kenney, Douglas Nowacek, Daniel Odell, Richard Seagraves, Randall Wells, Jack Lawson, and Sharon Young of the Atlantic Scientific Review Group. We thank the following people for advice and comments on the bottlenose dolphin bay, sound and estuary reports for the Atlantic: Jeff Adams, Wayne McFee, Lori Schwake, Todd Speakman, and Eric Zolman (National Ocean Service); Brian Balmer (University of North Carolina Wilmington); Marilyn Mazzoil (Harbor Branch Oceanographic Institute); and Megan Stolen (Hubbs-Sea World Institute). We thank Grisel Rodriguez-Ferrer (Department of Natural Resources and Environment, Puerto Rico) for her advice on the Caribbean reports. We thank the following people for advice and comments on the bottlenose dolphin bay, sound and estuary reports for the Gulf of Mexico: Brian Balmer, Craig Theriot (U.S. Army Corps of Engineers), Michael Harden (Louisiana Department of Wildlife and Fisheries), Steve Shippee (University of Central Florida), and Nancy Rabalais (Louisiana Universities Marine Consortium). We also thank the Marine Mammal Commission, the Humane Society of the United States, and the Center for Biological Diversity for their constructive comments and advice.
EXECUTIVE SUMMARY

Under the 1994 amendments of the Marine Mammal Protection Act (MMPA), the National Marine Fisheries Service (NMFS) and the United States Fish and Wildlife Service (USFWS) were required to generate stock assessment reports (SARs) for all marine mammal stocks in waters within the U.S. Exclusive Economic Zone (EEZ). The first reports for the Atlantic (includes the Gulf of Mexico) were published in July 1995 (Blaylock et al. 1995). The MMPA requires NMFS and USFWS to review these reports annually for strategic stocks of marine mammals and at least every 3 years for stocks determined to be non-strategic. The second edition of the SARs (1996 assessments) was published in October 1997 and contained all the previous reports, but major revisions and updating were only completed for strategic stocks (Waring et al. 1997). In subsequent annual reports, including this current 2011 edition, updated reports are indicated by the corresponding year date-stamp at the top right corner of the report and are included in the main body of the document. Stock assessments not updated in the current year are listed in an appendix. Also included in this report as appendices are: 1) a summary of serious injury/mortality estimates of marine mammals in observed U.S. fisheries (Appendix I), 2) a summary of NMFS records of large whale/human interactions examined for this assessment (Appendix II), 3) detailed fisheries information (Appendix III), 4) summary tables of abundance estimates generated over recent years and the surveys from which they are derived (Appendix IV), and 5) the the USFWS West Indian manatee assessments (Appendix VI).

Table I contains a summary, by species, of the information included in the stock assessments, and also indicates those that have been revised since the 2010 publication. Most of the changes incorporate new information into sections on population size and/or mortality estimates. A total of 23 of the Atlantic and Gulf of Mexico stock assessment reports were revised for 2011. In addition to this, three of the Gulf of Mexico bay, sound and estuary stocks of bottlenose dolphins – Barataria Bay, St. Joseph Bay, and Choctawhatchee Bay were given their own new reports (all of strategic status). Five new Caribbean stock reports were added this year—bottlenose dolphin, Cuvier’s beaked whale, short-finned pilot whale, spinner dolphin and Atlantic spotted dolphin. The revised and new SARs include 18 strategic and 12 non-strategic stocks.

This report was prepared by staff of the Northeast Fisheries Science Center (NEFSC) and Southeast Fisheries Science Center (SEFSC). NMFS staff presented the reports at the February 2011 meeting of the Atlantic Scientific Review Group (ASRG), and subsequent revisions were based on their contributions and constructive criticism. This is a working document and individual stock assessment reports will be updated as new information becomes available and as changes to marine mammal stocks and fisheries occur. The authors solicit any new information or comments which would improve future stock assessment reports.
INTRODUCTION

Section 117 of the 1994 amendments to the Marine Mammal Protection Act (MMPA) requires that an annual stock assessment report (SAR) for each stock of marine mammals that occurs in waters under USA jurisdiction, be prepared by the National Marine Fisheries Service (NMFS) and the U.S. Fish and Wildlife Service (USFWS), in consultation with regional Scientific Review Groups (SRGs). The SRGs are a broad representation of marine mammal and fishery scientists and members of the commercial fishing industry mandated to review the marine mammal stock assessments and provide advice to the NOAA Assistant Administrator for Fisheries. The reports are then made available on the Federal Register for public review and comment before final publication.

The MMPA requires that each SAR contain several items, including: (1) a description of the stock, including its geographic range; (2) a minimum population estimate, a maximum net productivity rate, and a description of current population trend, including a description of the information upon which these are based; (3) an estimate of the annual human-caused mortality and serious injury of the stock, and, for a strategic stock, other factors that may be causing a decline or impeding recovery of the stock, including effects on marine mammal habitat and prey; (4) a description of the commercial fisheries that interact with the stock, including the estimated number of vessels actively participating in the fishery and the level of incidental mortality and serious injury of the stock by each fishery on an annual basis; (5) a statement categorizing the stock as strategic or not, and why; and (6) an estimate of the potential biological removal (PBR) level for the stock, describing the information used to calculate it. The MMPA also requires that SARs be updated annually for stocks which are specified as strategic stocks, or for which significant new information is available, and once every three years for non-strategic stocks.

Following enactment of the 1994 amendments, the NMFS and USFWS held a series of workshops to develop guidelines for preparing the SARs. The first set of stock assessments for the Atlantic Coast (including the Gulf of Mexico) were published in July 1995 in the NOAA Technical Memorandum series (Blaylock et al. 1995). In April 1996, the NMFS held a workshop to review proposed additions and revisions to the guidelines for preparing SARs (Wade and Angliss 1997). Guidelines developed at the workshop were followed in preparing the 1996 through 2011 SARs. In 1997 and 2004 SARs were not produced.

In this document, major revisions and updating of the SARs were completed for Atlantic strategic stocks and stocks for which significant new information were available. These are identified by the December 2011 date-stamp at the top right corner at the beginning of each report.

REFERENCES
TABLE 1. A SUMMARY (including footnotes) OF ATLANTIC MARINE MAMMAL STOCK ASSESSMENT REPORTS FOR STOCKS OF MARINE MAMMALS UNDER NMFS'S AUTHORITY THAT OCCUPY WATERS UNDER USA JURISDICTION.

Total Annual S.I. (serious injury) and Mortality and Annual Fisheries S.I. and Mortality are mean annual figures for the period 2005-2009. The “SAR revised” column indicates 2011 stock assessment reports that have been revised relative to the 2009 reports (Y=yes, N=no). If abundance, mortality, PBR or status have been revised, they are indicated with the letters “a”, “m”, “p” and “status” respectively. For those species not updated in this edition, the year of last revision is indicated. Unk = unknown and undet=undetermined (PBR for species with outdated abundance estimates is considered "undetermined").

<table>
<thead>
<tr>
<th>Species</th>
<th>Stock Area</th>
<th>NMFS Cr.</th>
<th>Nbest</th>
<th>Nbest CV</th>
<th>Nmin</th>
<th>Rmax</th>
<th>Fr</th>
<th>PBR</th>
<th>Total Annual S.I and Mort.</th>
<th>Annual Fish. S.I and Mort. (c/s)</th>
<th>Strategic Status</th>
<th>SAR Revised</th>
</tr>
</thead>
<tbody>
<tr>
<td>North Atlantic right whale</td>
<td>Western North Atlantic</td>
<td>NEC</td>
<td>396</td>
<td>0</td>
<td>396</td>
<td>0.04</td>
<td>0.1</td>
<td>0.8</td>
<td>2.4<sup>a</sup></td>
<td>2.0<sup>a</sup></td>
<td>Y</td>
<td>Y a, m, p</td>
</tr>
<tr>
<td>Humpback whale</td>
<td>Gulf of Maine</td>
<td>NEC</td>
<td>847</td>
<td>0.55</td>
<td>549</td>
<td>0.04</td>
<td>0.1</td>
<td>1.1</td>
<td>5.2<sup>b</sup></td>
<td>3.8<sup>b</sup></td>
<td>Y</td>
<td>Y m</td>
</tr>
<tr>
<td>Fin whale</td>
<td>Western North Atlantic</td>
<td>NEC</td>
<td>3,985</td>
<td>0.24</td>
<td>3,269</td>
<td>0.04</td>
<td>0.1</td>
<td>6.5</td>
<td>2.6<sup>c</sup></td>
<td>0.8<sup>c</sup></td>
<td>Y</td>
<td>Y m</td>
</tr>
<tr>
<td>Sei whale</td>
<td>Nova Scotia</td>
<td>NEC</td>
<td>386</td>
<td>0.85</td>
<td>208</td>
<td>0.04</td>
<td>0.1</td>
<td>0.4</td>
<td>1.2</td>
<td>0.6</td>
<td>Y</td>
<td>Y m</td>
</tr>
<tr>
<td>Minke whale</td>
<td>Canadian east coast</td>
<td>NEC</td>
<td>8,987</td>
<td>0.32</td>
<td>6,909</td>
<td>0.04</td>
<td>0.5</td>
<td>69</td>
<td>5.9<sup>d</sup></td>
<td>5.5<sup>d</sup></td>
<td>N</td>
<td>Y m</td>
</tr>
<tr>
<td>Blue whale</td>
<td>Western North Atlantic</td>
<td>NEC</td>
<td>unk</td>
<td>unk</td>
<td>440</td>
<td>0.04</td>
<td>0.1</td>
<td>0.9</td>
<td>unk</td>
<td>unk</td>
<td>Y</td>
<td>N (2010)</td>
</tr>
<tr>
<td>Sperm whale</td>
<td>North Atlantic</td>
<td>NEC</td>
<td>4,804</td>
<td>0.38</td>
<td>3,539</td>
<td>0.04</td>
<td>0.1</td>
<td>7.1</td>
<td>0.2</td>
<td>0</td>
<td>Y</td>
<td>N (2007)</td>
</tr>
<tr>
<td>Dwarf sperm whale</td>
<td>Western North Atlantic</td>
<td>SEC</td>
<td>395<sup>e</sup></td>
<td>0.40</td>
<td>285<sup>e</sup></td>
<td>0.04</td>
<td>0.4</td>
<td>2.0</td>
<td>0</td>
<td>0</td>
<td>N</td>
<td>N (2007)</td>
</tr>
<tr>
<td>Pygmy sperm whale</td>
<td>Western North Atlantic</td>
<td>SEC</td>
<td>395<sup>e</sup></td>
<td>0.40</td>
<td>285<sup>e</sup></td>
<td>0.04</td>
<td>0.4</td>
<td>2.0</td>
<td>0</td>
<td>0</td>
<td>N</td>
<td>N (2007)</td>
</tr>
<tr>
<td>Killer whale</td>
<td>Western North Atlantic</td>
<td>NEC</td>
<td>unk</td>
<td>unk</td>
<td>unk</td>
<td>0.04</td>
<td>0.5</td>
<td>unk</td>
<td>0</td>
<td>0</td>
<td>N</td>
<td>N (1995)</td>
</tr>
<tr>
<td>Pygmy killer whale</td>
<td>Western North Atlantic</td>
<td>SEC</td>
<td>unk</td>
<td>unk</td>
<td>unk</td>
<td>0.04</td>
<td>0.5</td>
<td>unk</td>
<td>0</td>
<td>0</td>
<td>N</td>
<td>N (2007)</td>
</tr>
<tr>
<td>Northern bottlenose whale</td>
<td>Western North Atlantic</td>
<td>NEC</td>
<td>unk</td>
<td>unk</td>
<td>unk</td>
<td>0.04</td>
<td>0.5</td>
<td>unk</td>
<td>0</td>
<td>0</td>
<td>N</td>
<td>N (2008)</td>
</tr>
<tr>
<td>Cuvier's beaked whale</td>
<td>Western North Atlantic</td>
<td>NEC</td>
<td>3,513<sup>f</sup></td>
<td>0.63</td>
<td>2,154<sup>f</sup></td>
<td>0.04</td>
<td>0.4</td>
<td>17</td>
<td>1.0</td>
<td>1.0</td>
<td>N</td>
<td>N (2009)</td>
</tr>
<tr>
<td>Species</td>
<td>Stock Area</td>
<td>NMFS Cr.</td>
<td>Nbest</td>
<td>Nbest CV</td>
<td>Numin</td>
<td>Rmax</td>
<td>Fr</td>
<td>PIR</td>
<td>Total Annual S.I and Mort.</td>
<td>Annual Fish. S.I and Mort. (c)</td>
<td>Strategic Status</td>
<td>SAR Revised</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------------------------</td>
<td>----------</td>
<td>-------</td>
<td>----------</td>
<td>-------</td>
<td>------</td>
<td>----</td>
<td>-----</td>
<td>---------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Blainville’s beaked whale</td>
<td>Western North Atlantic</td>
<td>NEC</td>
<td>3,513'</td>
<td>0.63</td>
<td>2,154'</td>
<td>0.04</td>
<td>0.4</td>
<td>17</td>
<td>1.2</td>
<td>1.2</td>
<td>N</td>
<td>N (2009)</td>
</tr>
<tr>
<td>Gervais beaked whale</td>
<td>Western North Atlantic</td>
<td>NEC</td>
<td>3,513'</td>
<td>0.63</td>
<td>2,154'</td>
<td>0.04</td>
<td>0.4</td>
<td>17</td>
<td>1.0</td>
<td>1.0</td>
<td>N</td>
<td>N (2009)</td>
</tr>
<tr>
<td>Sowerby’s beaked whale</td>
<td>Western North Atlantic</td>
<td>NEC</td>
<td>3,513'</td>
<td>0.63</td>
<td>2,154'</td>
<td>0.04</td>
<td>0.4</td>
<td>17</td>
<td>1.2</td>
<td>1.0</td>
<td>N</td>
<td>N (2009)</td>
</tr>
<tr>
<td>True’s beaked whale</td>
<td>Western North Atlantic</td>
<td>NEC</td>
<td>3,513'</td>
<td>0.63</td>
<td>2,154'</td>
<td>0.04</td>
<td>0.4</td>
<td>17</td>
<td>1.2</td>
<td>1.2</td>
<td>N</td>
<td>N (2009)</td>
</tr>
<tr>
<td>Melon-headed whale</td>
<td>Western North Atlantic</td>
<td>SEC</td>
<td>unk</td>
<td>unk</td>
<td>unk</td>
<td>0.04</td>
<td>0.5</td>
<td>unk</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>N</td>
</tr>
<tr>
<td>Risso’s dolphin</td>
<td>Western North Atlantic</td>
<td>NEC</td>
<td>20,479</td>
<td>0.59</td>
<td>12,920</td>
<td>0.04</td>
<td>0.48</td>
<td>124</td>
<td>18</td>
<td>18 (0.37)</td>
<td>N</td>
<td>Y m</td>
</tr>
<tr>
<td>Pilot whale, long-finned</td>
<td>Western North Atlantic</td>
<td>NEC</td>
<td>12,619</td>
<td>0.37</td>
<td>9,333</td>
<td>0.04</td>
<td>0.5</td>
<td>93</td>
<td>162^a</td>
<td>162 (0.15)</td>
<td>Y</td>
<td>Y m</td>
</tr>
<tr>
<td>Pilot whale, short-finned</td>
<td>Western North Atlantic</td>
<td>SEC</td>
<td>24,674</td>
<td>0.45</td>
<td>17,190</td>
<td>0.04</td>
<td>0.5</td>
<td>172</td>
<td>162^a</td>
<td>162 (0.15)</td>
<td>N</td>
<td>Y m</td>
</tr>
<tr>
<td>Atlantic white-sided dolphin</td>
<td>Western North Atlantic</td>
<td>NEC</td>
<td>23,390</td>
<td>0.23</td>
<td>19,019</td>
<td>0.04</td>
<td>0.5</td>
<td>190</td>
<td>245</td>
<td>245 (0.12)</td>
<td>Y</td>
<td>Y, a, m, p, status</td>
</tr>
<tr>
<td>White-beaked dolphin</td>
<td>Western North Atlantic</td>
<td>NEC</td>
<td>2,003</td>
<td>0.94</td>
<td>1,023</td>
<td>0.04</td>
<td>0.5</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>N</td>
</tr>
<tr>
<td>Short-beaked common dolphin</td>
<td>Western North Atlantic</td>
<td>NEC</td>
<td>120,743</td>
<td>0.23</td>
<td>99,975</td>
<td>0.04</td>
<td>0.5</td>
<td>1,000</td>
<td>164</td>
<td>164 (0.12)</td>
<td>N</td>
<td>Y m</td>
</tr>
<tr>
<td>Atlantic spotted dolphin</td>
<td>Western North Atlantic</td>
<td>SEC</td>
<td>50,978</td>
<td>0.42</td>
<td>36,235</td>
<td>0.04</td>
<td>0.5</td>
<td>362</td>
<td>6</td>
<td>6 (1.0)</td>
<td>N</td>
<td>N (2007)</td>
</tr>
<tr>
<td>Pantropical spotted dolphin</td>
<td>Western North Atlantic</td>
<td>SEC</td>
<td>4,439</td>
<td>0.49</td>
<td>3,010</td>
<td>0.04</td>
<td>0.5</td>
<td>30</td>
<td>6</td>
<td>6 (1.0)</td>
<td>N</td>
<td>N (2007)</td>
</tr>
<tr>
<td>Striped dolphin</td>
<td>Western North Atlantic</td>
<td>NEC</td>
<td>94,462</td>
<td>0.40</td>
<td>68,558</td>
<td>0.04</td>
<td>0.5</td>
<td>686</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>N</td>
</tr>
<tr>
<td>Fraser’s dolphin</td>
<td>Western North Atlantic</td>
<td>SEC</td>
<td>unk</td>
<td>unk</td>
<td>unk</td>
<td>0.04</td>
<td>0.5</td>
<td>unk</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>N</td>
</tr>
</tbody>
</table>

3
<table>
<thead>
<tr>
<th>Species</th>
<th>Stock Area</th>
<th>NMFS Ctr.</th>
<th>Nbest</th>
<th>Nbest CV</th>
<th>Numin</th>
<th>Rmax</th>
<th>Fr</th>
<th>PER</th>
<th>Total Annual S.I and Mort.</th>
<th>Annual Fish. S.I and Mort. (cfs)</th>
<th>Strategic Status</th>
<th>SAR Revised</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rough-toothed dolphin</td>
<td>Western North Atlantic</td>
<td>SEC</td>
<td>unk</td>
<td>unk</td>
<td>unk</td>
<td>0.04</td>
<td>0.5</td>
<td>unk</td>
<td>0</td>
<td>0</td>
<td>N</td>
<td>N (2008)</td>
</tr>
<tr>
<td>Clymene dolphin</td>
<td>Western North Atlantic</td>
<td>SEC</td>
<td>unk</td>
<td>unk</td>
<td>unk</td>
<td>0.04</td>
<td>0.5</td>
<td>undet</td>
<td>0</td>
<td>0</td>
<td>N</td>
<td>N (2007)</td>
</tr>
<tr>
<td>Spinner dolphin</td>
<td>Western North Atlantic</td>
<td>SEC</td>
<td>unk</td>
<td>unk</td>
<td>unk</td>
<td>0.04</td>
<td>0.5</td>
<td>unk</td>
<td>0</td>
<td>0</td>
<td>N</td>
<td>N (2007)</td>
</tr>
<tr>
<td>Bottlenose dolphin</td>
<td>Western North Atlantic, offshore</td>
<td>SEC</td>
<td>81,588 b</td>
<td>0.17</td>
<td>70,775 b</td>
<td>0.04</td>
<td>0.4</td>
<td>566</td>
<td>unk</td>
<td>unk</td>
<td>N</td>
<td>N (2008)</td>
</tr>
<tr>
<td>Bottlenose dolphin</td>
<td>Western North Atlantic, coastal, northern migratory</td>
<td>SEC</td>
<td>9,604</td>
<td>0.36</td>
<td>7,147</td>
<td>0.04</td>
<td>0.5</td>
<td>71</td>
<td>5.9-8.2</td>
<td>5.9-8.2</td>
<td>Y</td>
<td>N (2010)</td>
</tr>
<tr>
<td>Bottlenose dolphin</td>
<td>Western North Atlantic, coastal, southern migratory</td>
<td>SEC</td>
<td>12,482</td>
<td>0.32</td>
<td>9,591</td>
<td>0.04</td>
<td>0.5</td>
<td>96</td>
<td>24-55</td>
<td>24-55</td>
<td>Y</td>
<td>N (2010)</td>
</tr>
<tr>
<td>Bottlenose dolphin</td>
<td>Western North Atlantic, S. Carolina/Georgia</td>
<td>SEC</td>
<td>7,738</td>
<td>0.23</td>
<td>6,399</td>
<td>0.04</td>
<td>0.5</td>
<td>64</td>
<td>unk</td>
<td>unk</td>
<td>Y</td>
<td>N (2010)</td>
</tr>
<tr>
<td>Bottlenose dolphin</td>
<td>Western North Atlantic, coastal, northern Florida</td>
<td>SEC</td>
<td>3,064</td>
<td>0.24</td>
<td>2,511</td>
<td>0.04</td>
<td>0.5</td>
<td>25</td>
<td>unk</td>
<td>unk</td>
<td>Y</td>
<td>N (2010)</td>
</tr>
<tr>
<td>Bottlenose dolphin</td>
<td>Western North Atlantic, coastal, central Florida</td>
<td>SEC</td>
<td>6,318</td>
<td>0.26</td>
<td>5,094</td>
<td>0.04</td>
<td>0.5</td>
<td>51</td>
<td>unk</td>
<td>unk</td>
<td>Y</td>
<td>N (2010)</td>
</tr>
<tr>
<td>Bottlenose dolphin</td>
<td>Northern North Carolina Estuarine System</td>
<td>SEC</td>
<td>unk</td>
<td>unk</td>
<td>unk</td>
<td>0.04</td>
<td>0.5</td>
<td>undet</td>
<td>4.1-22.6</td>
<td>4.1-22.6</td>
<td>Y</td>
<td>N (2010)</td>
</tr>
<tr>
<td>Bottlenose dolphin</td>
<td>Southern North Carolina Estuarine System</td>
<td>SEC</td>
<td>2,454</td>
<td>0.53</td>
<td>1,614</td>
<td>0.04</td>
<td>0.5</td>
<td>16</td>
<td>0.6-1.2</td>
<td>0.6-1.2</td>
<td>Y</td>
<td>N (2010)</td>
</tr>
<tr>
<td>Bottlenose dolphin</td>
<td>Charleston Estuarine System</td>
<td>SEC</td>
<td>unk</td>
<td>unk</td>
<td>unk</td>
<td>0.04</td>
<td>0.5</td>
<td>unk</td>
<td>unk</td>
<td>unk</td>
<td>Y</td>
<td>N (2009)</td>
</tr>
<tr>
<td>Bottlenose dolphin</td>
<td>Northern Georgia/ Southern South Carolina Estuarine System</td>
<td>SEC</td>
<td>unk</td>
<td>unk</td>
<td>unk</td>
<td>0.04</td>
<td>0.5</td>
<td>unk</td>
<td>unk</td>
<td>unk</td>
<td>Y</td>
<td>N (2009)</td>
</tr>
<tr>
<td>Bottlenose dolphin</td>
<td>Southern Georgia Estuarine System</td>
<td>SEC</td>
<td>unk</td>
<td>unk</td>
<td>unk</td>
<td>0.04</td>
<td>0.5</td>
<td>unk</td>
<td>unk</td>
<td>unk</td>
<td>Y</td>
<td>N (2009)</td>
</tr>
<tr>
<td>Bottlenose dolphin</td>
<td>Jacksonville Estuarine System</td>
<td>SEC</td>
<td>unk</td>
<td>unk</td>
<td>unk</td>
<td>0.04</td>
<td>0.5</td>
<td>unk</td>
<td>unk</td>
<td>unk</td>
<td>Y</td>
<td>N (2009)</td>
</tr>
<tr>
<td>Bottlenose dolphin</td>
<td>Indian River Lagoon Estuarine System</td>
<td>SEC</td>
<td>unk</td>
<td>unk</td>
<td>unk</td>
<td>0.04</td>
<td>0.5</td>
<td>unk</td>
<td>unk</td>
<td>unk</td>
<td>Y</td>
<td>N (2009)</td>
</tr>
<tr>
<td>Species</td>
<td>Stock Area</td>
<td>NMFS Ctr.</td>
<td>Nbest</td>
<td>Nbest CV</td>
<td>Nmin</td>
<td>Rmax</td>
<td>Fr</td>
<td>PIR</td>
<td>Total Annual S.I and Mort.</td>
<td>Annual Fish. S.I and Mort. (c)</td>
<td>Strategic Status</td>
<td>SAR Revised</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------------------------</td>
<td>-----------</td>
<td>-------</td>
<td>----------</td>
<td>------</td>
<td>------</td>
<td>----</td>
<td>-----</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Bottlenose dolphin</td>
<td>Biscayne Bay</td>
<td>SEC</td>
<td>unk</td>
<td>unk</td>
<td>unk</td>
<td>0.04</td>
<td>0.5</td>
<td>unk</td>
<td>unk</td>
<td>uncorrected</td>
<td>Y</td>
<td>N (2009)</td>
</tr>
<tr>
<td>Bottlenose dolphin</td>
<td>Florida Bay</td>
<td>SEC</td>
<td>514</td>
<td>0.17</td>
<td>447</td>
<td>0.04</td>
<td>0.5</td>
<td>4.5</td>
<td>uncorrected</td>
<td>uncorrected</td>
<td>N</td>
<td>N (2009)</td>
</tr>
<tr>
<td>Harbor porpoise</td>
<td>Gulf of Maine/Bay of Fundy</td>
<td>NEC</td>
<td>89,054</td>
<td>0.47</td>
<td>60,970</td>
<td>0.046</td>
<td>0.5</td>
<td>701</td>
<td>927[2]</td>
<td>927(0.14)</td>
<td>Y</td>
<td>Y m</td>
</tr>
<tr>
<td>Harbor seal</td>
<td>Western North Atlantic</td>
<td>NEC</td>
<td>unk</td>
<td>unk</td>
<td>unk</td>
<td>0.12</td>
<td>0.5</td>
<td>undet</td>
<td>385</td>
<td>377 (0.13)</td>
<td>N</td>
<td>Y m</td>
</tr>
<tr>
<td>Gray seal</td>
<td>Western North Atlantic</td>
<td>NEC</td>
<td>unk</td>
<td>unk</td>
<td>unk</td>
<td>0.12</td>
<td>1.0</td>
<td>unk</td>
<td>1,682</td>
<td>678 (0.14)</td>
<td>N</td>
<td>Y m</td>
</tr>
<tr>
<td>Harp seal</td>
<td>Western North Atlantic</td>
<td>NEC</td>
<td>unk</td>
<td>unk</td>
<td>unk</td>
<td>0.12</td>
<td>1.0</td>
<td>unk</td>
<td>441,950[3]</td>
<td>231(0.18)</td>
<td>N</td>
<td>Y m</td>
</tr>
<tr>
<td>Hooded seal</td>
<td>Western North Atlantic</td>
<td>NEC</td>
<td>unk</td>
<td>unk</td>
<td>unk</td>
<td>0.12</td>
<td>0.75</td>
<td>unk</td>
<td>5,199[4]</td>
<td>25(0.82)</td>
<td>N</td>
<td>N (2007)</td>
</tr>
<tr>
<td>Sperm whale</td>
<td>Gulf of Mexico Oceanic</td>
<td>SEC</td>
<td>1,665</td>
<td>0.20</td>
<td>1,409</td>
<td>0.04</td>
<td>0.1</td>
<td>2.8</td>
<td>0</td>
<td>0</td>
<td>Y</td>
<td>N (2010)</td>
</tr>
<tr>
<td>Bryde’s whale</td>
<td>Gulf of Mexico Oceanic</td>
<td>SEC</td>
<td>15</td>
<td>1.98</td>
<td>5</td>
<td>0.04</td>
<td>0.5</td>
<td>0.1</td>
<td>0.2</td>
<td>0</td>
<td>Y</td>
<td>Y m</td>
</tr>
<tr>
<td>Cuvier’s beaked whale</td>
<td>Gulf of Mexico Oceanic</td>
<td>SEC</td>
<td>65</td>
<td>0.67</td>
<td>39</td>
<td>0.04</td>
<td>0.5</td>
<td>0.4</td>
<td>0</td>
<td>0</td>
<td>N</td>
<td>N (2009)</td>
</tr>
<tr>
<td>Binnville’s beaked whale</td>
<td>Gulf of Mexico Oceanic</td>
<td>SEC</td>
<td>57[5]</td>
<td>1.40</td>
<td>24[6]</td>
<td>0.04</td>
<td>0.5</td>
<td>0.2[6]</td>
<td>0</td>
<td>0</td>
<td>N</td>
<td>N (2009)</td>
</tr>
<tr>
<td>Bottlenose dolphin</td>
<td>Gulf of Mexico Continental shelf</td>
<td>SEC</td>
<td>unk</td>
<td>unk</td>
<td>unk</td>
<td>0.04</td>
<td>0.5</td>
<td>undet</td>
<td>uncorrected</td>
<td>uncorrected</td>
<td>N</td>
<td>N (2009)</td>
</tr>
<tr>
<td>Bottlenose dolphin</td>
<td>Gulf of Mexico, eastern coastal</td>
<td>SEC</td>
<td>7,702</td>
<td>0.19</td>
<td>6,551</td>
<td>0.04</td>
<td>0.5</td>
<td>66</td>
<td>uncorrected</td>
<td>uncorrected</td>
<td>N</td>
<td>N (2010)</td>
</tr>
<tr>
<td>Bottlenose dolphin</td>
<td>Gulf of Mexico, northern coastal</td>
<td>SEC</td>
<td>2,473</td>
<td>0.25</td>
<td>2,004</td>
<td>0.04</td>
<td>0.5</td>
<td>20</td>
<td>uncorrected</td>
<td>uncorrected</td>
<td>N</td>
<td>N (2010)</td>
</tr>
<tr>
<td>Bottlenose dolphin</td>
<td>Gulf of Mexico, western coastal</td>
<td>SEC</td>
<td>unk</td>
<td>unk</td>
<td>unk</td>
<td>0.04</td>
<td>0.5</td>
<td>undet</td>
<td>uncorrected</td>
<td>uncorrected</td>
<td>Y</td>
<td>N (2010)</td>
</tr>
<tr>
<td>Species</td>
<td>Stock Area</td>
<td>NMFS Cr.</td>
<td>Nnest</td>
<td>Nnest CV</td>
<td>Numin</td>
<td>Rmax</td>
<td>Fr</td>
<td>PIR</td>
<td>Total Annual S.I and Mort.</td>
<td>Annual Fish. S.I and Mort. (c/s)</td>
<td>Strategic Status</td>
<td>SAR Revised</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
<td>----------</td>
<td>-------</td>
<td>----------</td>
<td>-------</td>
<td>------</td>
<td>----</td>
<td>-----</td>
<td>---------------------------</td>
<td>----------------------------------</td>
<td>-----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Bottlenose dolphin</td>
<td>Gulf of Mexico Oceanic</td>
<td>SEC</td>
<td>3,708</td>
<td>0.42</td>
<td>2,641</td>
<td>0.04</td>
<td>0.5</td>
<td>26</td>
<td>0.6</td>
<td>0.6</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Bottlenose dolphin</td>
<td>Gulf of Mexico bay, sound, and estuary (29 stocks)</td>
<td>SEC</td>
<td>unk for all but 2 stocks</td>
<td>unk for all but 2 stocks</td>
<td>0.04</td>
<td>0.5</td>
<td>Undet for all but 2 stocks</td>
<td>unk</td>
<td>unk</td>
<td>Y for all</td>
<td>Y (new report)</td>
<td></td>
</tr>
<tr>
<td>Bottlenose dolphin</td>
<td>Barataria Bay</td>
<td>SEC</td>
<td>unk</td>
<td>unk</td>
<td>unk</td>
<td>0.04</td>
<td>0.5</td>
<td>undet</td>
<td>unk</td>
<td>unk</td>
<td>Y</td>
<td>Y (new report)</td>
</tr>
<tr>
<td>Bottlenose dolphin</td>
<td>St. Joseph Bay</td>
<td>SEC</td>
<td>1.46</td>
<td>0.18</td>
<td>126</td>
<td>0.04</td>
<td>0.5</td>
<td>1.3</td>
<td>unk</td>
<td>unk</td>
<td>Y</td>
<td>Y (new report)</td>
</tr>
<tr>
<td>Bottlenose dolphin</td>
<td>Choctawhatchee Bay</td>
<td>SEC</td>
<td>179</td>
<td>0.04</td>
<td>173</td>
<td>0.04</td>
<td>0.5</td>
<td>1.7</td>
<td>unk</td>
<td>unk</td>
<td>Y</td>
<td>Y (new report)</td>
</tr>
<tr>
<td>Atlantic spotted dolphin</td>
<td>Gulf of Mexico (Continental shelf and Oceanic)</td>
<td>SEC</td>
<td>unk</td>
<td>unk</td>
<td>unk</td>
<td>0.04</td>
<td>0.5</td>
<td>undet</td>
<td>unk</td>
<td>unk</td>
<td>N</td>
<td>N (2009)</td>
</tr>
<tr>
<td>Pantropical spotted dolphin</td>
<td>Gulf of Mexico Oceanic</td>
<td>SEC</td>
<td>34,067</td>
<td>0.18</td>
<td>29,311</td>
<td>0.04</td>
<td>0.5</td>
<td>293</td>
<td>3.2</td>
<td>3.2</td>
<td>N</td>
<td>Y m</td>
</tr>
<tr>
<td>Striped dolphin</td>
<td>Gulf of Mexico Oceanic</td>
<td>SEC</td>
<td>3,325</td>
<td>0.48</td>
<td>2,266</td>
<td>0.04</td>
<td>0.5</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>N</td>
<td>N (2009)</td>
</tr>
<tr>
<td>Spinner dolphin</td>
<td>Gulf of Mexico Oceanic</td>
<td>SEC</td>
<td>1,989</td>
<td>0.48</td>
<td>1,356</td>
<td>0.04</td>
<td>0.5</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>N</td>
<td>N (2009)</td>
</tr>
<tr>
<td>Rough-toothed dolphin</td>
<td>Gulf of Mexico (Outer continental shelf and Oceanic)</td>
<td>SEC</td>
<td>unk</td>
<td>unk</td>
<td>unk</td>
<td>0.04</td>
<td>0.5</td>
<td>undet</td>
<td>0</td>
<td>0</td>
<td>N</td>
<td>N (2009)</td>
</tr>
<tr>
<td>Cymbene dolphin</td>
<td>Gulf of Mexico Oceanic</td>
<td>SEC</td>
<td>6,575</td>
<td>0.36</td>
<td>4,901</td>
<td>0.04</td>
<td>0.5</td>
<td>49</td>
<td>0</td>
<td>0</td>
<td>N</td>
<td>N (2009)</td>
</tr>
<tr>
<td>Fraser’s dolphin</td>
<td>Gulf of Mexico Oceanic</td>
<td>SEC</td>
<td>unk</td>
<td>unk</td>
<td>unk</td>
<td>0.04</td>
<td>0.5</td>
<td>undet</td>
<td>0</td>
<td>0</td>
<td>N</td>
<td>N (2009)</td>
</tr>
<tr>
<td>Killer whale</td>
<td>Gulf of Mexico Oceanic</td>
<td>SEC</td>
<td>49</td>
<td>0.77</td>
<td>28</td>
<td>0.04</td>
<td>0.5</td>
<td>0.3</td>
<td>0</td>
<td>0</td>
<td>N</td>
<td>N (2010)</td>
</tr>
<tr>
<td>False killer whale</td>
<td>Gulf of Mexico Oceanic</td>
<td>SEC</td>
<td>777</td>
<td>0.56</td>
<td>501</td>
<td>0.04</td>
<td>0.5</td>
<td>5.0</td>
<td>0</td>
<td>0</td>
<td>N</td>
<td>N (2009)</td>
</tr>
<tr>
<td>Pygmy killer whale</td>
<td>Gulf of Mexico Oceanic</td>
<td>SEC</td>
<td>323</td>
<td>0.60</td>
<td>203</td>
<td>0.04</td>
<td>0.5</td>
<td>2.0</td>
<td>0</td>
<td>0</td>
<td>N</td>
<td>N (2009)</td>
</tr>
<tr>
<td>Dwarf sperm whale</td>
<td>Gulf of Mexico Oceanic</td>
<td>SEC</td>
<td>453</td>
<td>0.35</td>
<td>340</td>
<td>0.04</td>
<td>0.5</td>
<td>3.4 e</td>
<td>0</td>
<td>0</td>
<td>N</td>
<td>N (2009)</td>
</tr>
<tr>
<td>Species</td>
<td>Stock Area</td>
<td>NMFS Ctr.</td>
<td>Nbest</td>
<td>Nbest CV</td>
<td>Nmin</td>
<td>Rmax</td>
<td>Fr</td>
<td>PBR</td>
<td>Total Annual S.I and Mort.</td>
<td>Annual Fish. S.I and Mort. (c)</td>
<td>Strategic Status</td>
<td>SAR Revised</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------------------------</td>
<td>-----------</td>
<td>-------</td>
<td>----------</td>
<td>------</td>
<td>------</td>
<td>----</td>
<td>-----</td>
<td>--------------------------</td>
<td>-----------------------------</td>
<td>-----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Pygmy sperm whale</td>
<td>Gulf of Mexico Oceanic</td>
<td>SEC</td>
<td>453e</td>
<td>0.35</td>
<td>340c</td>
<td>0.04</td>
<td>0.5</td>
<td>3.4c</td>
<td>0</td>
<td>0</td>
<td>N</td>
<td>N (2009)</td>
</tr>
<tr>
<td>Melon-headed whale</td>
<td>Gulf of Mexico Oceanic</td>
<td>SEC</td>
<td>2,283</td>
<td>0.76</td>
<td>1,293</td>
<td>0.04</td>
<td>0.5</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>N</td>
<td>N (2009)</td>
</tr>
<tr>
<td>Risso’s dolphin</td>
<td>Gulf of Mexico Oceanic</td>
<td>SEC</td>
<td>1,589</td>
<td>0.27</td>
<td>1,271</td>
<td>0.04</td>
<td>0.5</td>
<td>13</td>
<td>1.65</td>
<td>1.65 (0.63)</td>
<td>N</td>
<td>N (2010)</td>
</tr>
<tr>
<td>Pilot whale, short-finned*</td>
<td>Gulf of Mexico Oceanic</td>
<td>SEC</td>
<td>716</td>
<td>0.34</td>
<td>542</td>
<td>0.04</td>
<td>0.5</td>
<td>5.4</td>
<td>0</td>
<td>0</td>
<td>N</td>
<td>N (2009)</td>
</tr>
<tr>
<td>Sperm Whale</td>
<td>Puerto Rico and US Virgin Islands stock</td>
<td>SEC</td>
<td>unk</td>
<td>unk</td>
<td>unk</td>
<td>0.04</td>
<td>0.1</td>
<td>unk</td>
<td>unk</td>
<td>unk</td>
<td>unk</td>
<td>Y</td>
</tr>
<tr>
<td>Bottlenose dolphin</td>
<td>Puerto Rico and US Virgin Islands stock</td>
<td>SEC</td>
<td>unk</td>
<td>unk</td>
<td>unk</td>
<td>0.04</td>
<td>0.5</td>
<td>unk</td>
<td>unk</td>
<td>unk</td>
<td>unk</td>
<td>Y (new report)</td>
</tr>
<tr>
<td>Cuvier’s beaked whale</td>
<td>Puerto Rico and US Virgin Islands stock</td>
<td>SEC</td>
<td>unk</td>
<td>unk</td>
<td>unk</td>
<td>0.04</td>
<td>0.5</td>
<td>unk</td>
<td>unk</td>
<td>unk</td>
<td>unk</td>
<td>Y (new report)</td>
</tr>
<tr>
<td>Pilot whale, short-finned*</td>
<td>Puerto Rico and US Virgin Islands stock</td>
<td>SEC</td>
<td>unk</td>
<td>unk</td>
<td>unk</td>
<td>0.04</td>
<td>0.5</td>
<td>unk</td>
<td>unk</td>
<td>unk</td>
<td>unk</td>
<td>Y (new report)</td>
</tr>
<tr>
<td>Spinner dolphin</td>
<td>Puerto Rico and US Virgin Islands stock</td>
<td>SEC</td>
<td>unk</td>
<td>unk</td>
<td>unk</td>
<td>0.04</td>
<td>0.5</td>
<td>unk</td>
<td>unk</td>
<td>unk</td>
<td>unk</td>
<td>Y (new report)</td>
</tr>
<tr>
<td>Atlantic spotted dolphin</td>
<td>Puerto Rico and US Virgin Islands stock</td>
<td>SEC</td>
<td>unk</td>
<td>unk</td>
<td>unk</td>
<td>0.04</td>
<td>0.5</td>
<td>unk</td>
<td>unk</td>
<td>unk</td>
<td>unk</td>
<td>Y (new report)</td>
</tr>
</tbody>
</table>

a. The R given for right whales is the default Rmax of 0.04. The total estimated human-caused mortality and serious injury to right whales is estimated at 2.4 per year (USA waters, 2.0; Canadian waters, 0.4). This is derived from two components: 1) non-observed fishery entanglement records at 0.8 per year (USA waters, 0.8; Canadian waters, 0), and 2) ship strike records at 1.6 per year (USA waters, 1.2; Canadian waters, 0.4).
b. The total estimated human-caused mortality and serious injury to the Gulf of Maine humpback whale stock is estimated as 5.2 per year (USA waters, 4.8; Canadian waters, 0.4). This average is derived from two components: 1) incidental fishery interaction records 3.8 (USA waters, 3.4; Canadian waters, 0.4); 2) records of vessel collisions, 1.4 (USA waters, 1.4; Canadian waters, 0).
c. This is based on a review of NMFS records from 2005-2009, that yielded an average of 2.6 human caused mortality; 1.8 ship strikes (1.4 in USA waters and 0.4 in Canadian waters) and 0.8 fishery interactions/entanglements (0.6 in USA and 0.2 in Canadian waters).
d. During 2005-2009, the USA total annual estimated average human-caused mortality is 5.9 minke whales per year. This is derived from four components: 0.8 minke whales per year from USA fisheries using strandings and entanglement data, 1.2 minke whales per year from Canadian fisheries using strandings and entanglement data, 3.5 minke whales per year from observed fishery data (CV=0.34), and 0.4 minke whales per year from ship strikes.
e. This estimate may include both the dwarf and pygmy sperm whales.
f. This estimate includes Cuvier’s beaked whales and undifferentiated *Mesoplodon* spp. beaked whales.
g. While abundance estimates have been attributed to each stock, the bycatch estimate includes both long-finned and short-finned pilot whales.
h. Estimates may include sightings of the coastal form.
i. Several seasonal management units have been defined for the coastal bottlenose dolphin. Each has a unique abundance estimate, PBR and mortality estimate provided in the Western North Atlantic coastal bottlenose dolphin species section of the text.

j. The total annual estimated average human-caused mortality is 927 (CV=0.14) harbor porpoises per year; 883 harbor porpoise per year (CV=0.14) from U.S. fisheries using observer and MMAP data and 44 per year (unknown CV) from Canadian fisheries using observer data.

k. The total estimated human caused annual mortality and serious injury to harp seals is 444,950. Estimated annual human caused mortality in US waters) 231 harp seals CV=0.18) from the observed US fisheries. The remaining mortality is derived from five components: 1) 2005-2009 average catches of Northwest Atlantic harp seals by Canada, 239,591; 2) 2005-2009 average Greenland Catch, 86,474; 3) 1,000 average catches in the Canadian Arctic; 4) 12,290 average bycatches in the Newfoundland lumpfish fishery; and 5) 102,803 average struck and lost animals.

l. This is derived from three components: 1) 5,173 from 2001-2005 (2001 = 3,960; 2002 = 7,341; 2003 = 5,446, 2004=5,270; and 2005=3,846) average catches of Northwest Atlantic population of hooded seals by Canada and Greenland; 2) 25 hooded seals (CV=0.82) from the observed U.S. fisheries; and 3) one hooded seal from average 2001-2005 stranding mortalities resulting from non-fishery human interactions.

m. This estimate includes Gervais’ beaked whales and Blainville’s beaked whales.

n. This estimate includes all Globicephala sp., though it is presumed that only short-finned pilot whales are present in the Gulf of Mexico.
NORTH ATLANTIC RIGHT WHALE (Eubalaena glacialis): Western Atlantic Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

The western North Atlantic right whale population ranges primarily from calving grounds in coastal waters of the southeastern United States to feeding grounds in New England waters and the Canadian Bay of Fundy, Scotian Shelf, and Gulf of St. Lawrence. Knowlton et al. (1992) reported several long-distance movements as far north as Newfoundland, the Labrador Basin, and southeast of Greenland. In addition, recent resightings of photographically identified individuals have been made off Iceland, in the old Cape Farewell whaling ground east of Greenland (Hamilton et al. 2007), northern Norway (Jacobsen et al. 2004), and the Azores (Hamilton et al. 2009). The September 1999 Norwegian sighting represents one of only two published sightings this century of a right whale in Norwegian waters, and the first since 1926. Together, these long-range matches indicate an extended range for at least some individuals and perhaps the existence of important habitat areas not presently well described. The few published records from the Gulf of Mexico (Moore and Clark 1963; Schmidly et al. 1972) represent either distributional anomalies, normal wanderings of occasional animals, or a more extensive historic range beyond the sole known calving and wintering ground in the waters of the southeastern United States. Whatever the case, the location of much of the population is unknown during the winter. Offshore (greater than 30 miles) surveys flown off the coast of northeastern Florida and southeastern Georgia from 1996 to 2001 had 3 sightings in 1996, 1 in 1997, 13 in 1998, 6 in 1999, 11 in 2000 and 6 in 2001 (within each year, some were repeat sightings of previously recorded individuals). Several of the years that offshore surveys were flown were some of the lowest count years for calves and for numbers of right whales in the Southeast recorded since comprehensive surveys began in the calving grounds. Therefore, the frequency with which right whales occur in offshore waters in the southeastern U.S. remains unclear.

Research results suggest the existence of six major habitats or congregation areas for western North Atlantic right whales: the coastal waters of the southeastern United States; the Great South Channel; Georges Bank/Gulf of Maine; Cape Cod and Massachusetts Bays; the Bay of Fundy; and the Scotian Shelf. However, movements within and between habitats are extensive. In 2000, one whale was photographed in Florida waters on 12 January, then again eleven days later (23 January) in Cape Cod Bay, less than a month later off Georgia (16 February), and back in Cape Cod Bay on 23 March, effectively making the round-trip migration to the Southeast and back at least twice during the winter season (Brown and Marx 2000). Results from satellite tags clearly indicate that sightings separated by perhaps two weeks should not necessarily be assumed to indicate a stationary or resident animal. Instead, telemetry data have shown rather lengthy and somewhat distant excursions, including into deep water off the continental shelf (Mate et al. 1997; Baumgartner and Mate 2005). Systematic surveys conducted off the coast of North Carolina during the winters of 2001 and 2002 sighted 8 calves, suggesting the calving grounds may extend as far north as Cape Fear. Four of the calves were not sighted by surveys conducted further south. One of the cows photographed was new to researchers, having effectively eluded identification over the period of its maturation (McLellan et al. 2004).

New England waters are an important feeding habitat for right whales, which feed in this area primarily on copepods (largely of the genera Calanus and Pseudocalanus). Research suggests that right whales must locate and exploit extremely dense patches of zooplankton to feed efficiently (Mayo and Marx 1990). These dense zooplankton patches are likely a primary characteristic of the spring, summer, and fall right whale habitats (Kenney et al. 1986, 1995). While feeding in the coastal waters off Massachusetts has been better studied than in other areas, right whale feeding has also been observed on the margins of Georges Bank, in the Great South Channel, in the Gulf of Maine, in the Bay of Fundy, and over the Scotian Shelf. The characteristics of acceptable prey distribution in these areas are beginning to emerge (Baumgartner et al. 2003; Baumgartner and Mate 2003). NMFS (National Marine Fisheries Service) and Provincetown Center for Coastal Studies aerial surveys during springs of 1999-2006 found right whales along the Northern Edge of Georges Bank, in the Great South Channel, in Georges Basin, and in various locations in the Gulf of Maine including Cashes Ledge, Platts Bank, and Wilkinson Basin. Analyses of the sightings data has shown that utilization of these areas has a strong seasonal component (Pace and Merrick 2008). The consistency with which right whales occur in such locations is relatively high, but these studies also highlight the high interannual variability in right whale use of some habitats.

Genetic analyses based upon direct sequencing of mitochondrial DNA (mtDNA) have identified six mtDNA
haplotypes in the western North Atlantic right whale (Malik et al. 1999, McLeod and White 2010). Schaeff et al. (1997) compared the genetic variability of North Atlantic and southern right whales (E. australis), and found the former to be significantly less diverse, a finding broadly replicated by Malik et al. (2000). The low diversity in North Atlantic right whales might be indicative of inbreeding, but no definitive conclusion can be reached using current data. Additional work comparing modern and historic genetic population structure, using DNA extracted from museum and archaeological specimens of baleen and bone, has suggested that the eastern and western North Atlantic populations were not genetically distinct (Rosenbaum et al. 1997; 2000). However, the virtual extirpation of the eastern stock and its lack of recovery in the last hundred years strongly suggests population subdivision over a protracted (but not evolutionary) timescale. Genetic studies concluded that the principal loss of genetic diversity occurred prior to the 18th century (Waldick et al. 2002). However, revised conclusions that nearly all the remains in the North American Basque whaling archaeological sites were bowhead whales and not right whales (Rastogi et al. 2004) contradict the previously held belief that Basque whaling during the 16th and 17th centuries was principally responsible for the loss of genetic diversity.

High-resolution (using 35 microsatellite loci) genetic profiling has been completed for 66% of all identified North Atlantic right whales through 2001. This work has improved our understanding of genetic variability, number of reproductively active individuals, reproductive fitness, parentage and relatedness of individuals (Frasier et al. 2007).

One emerging result of the genetic studies is the importance of obtaining biopsy samples from calves on the calving grounds. Only 60% of all known calves are seen with their mothers in summering areas, when their callosity patterns are stable enough to reliably make a photo-ID match later in life. The remaining 40% are not seen on a known summering ground. Because the calf’s genetic profile is the only reliable way to establish parentage, if the calf is not sampled when associated with its mother early on, then it is not possible to link it with a calving event or to its mother, and information such as age and familial relationships is lost. From 1980 to 2001, there were 64 calves born that were not sighted later with their mothers and thus unavailable to provide age-specific mortality information (Frasier et al. 2007). An additional interpretation of paternity analyses is that the population size may be larger than was previously thought. Fathers for only 45% of known calves have been genetically determined. However, genetic profiles were available for 69% of all photo-identified males (Frasier 2005). The conclusion was that the majority of these calves must have different fathers that cannot be accounted for by the unsampled males and the population of males must be larger (Frasier 2005). This inference of additional animals that have never been captured photographically and/or genetically suggests the existence of habitats of potentially significant use that remain unknown.

Population Size

The western North Atlantic minimum stock size is based on a census of individual whales identified using photo-identification techniques. A review of the photo-ID recapture database as it existed on 6 July 2010 indicated that 396 individually recognized whales in the catalog were known to be alive during 2007. This number represents a minimum population size. This count has no associated coefficient of variation.

Previous estimates using the same method with the added assumption that whales seen within the previous seven years were still alive have resulted in counts of 295 animals in 1992 (Knowlton et al. 1994) and 299 animals in 1998 (Kraus et al. 2001). An IWC workshop on status and trends of western North Atlantic right whales gave a minimum direct-count estimate of 263 right whales alive in 1996 and noted that the true population was unlikely to be substantially greater than this (Best et al. 2001).

Historical Abundance

An estimate of pre-exploitation population size is not available. Basque whalers were thought to have taken right whales during the 1500s in the Strait of Belle Isle region (Aguilar 1866), however, recent genetic analysis has shown that nearly all of the remains found in that area are, in fact, those of bowhead whales (Rastogi et al. 2004; Frasier et al. 2007). The stock of right whales may have already been substantially reduced by the time whaling was begun by colonists in the Plymouth area in the 1600s (Reeves et al. 2001; Reeves et al. 2007). A modest but persistent whaling effort along the coast of the eastern U.S. lasted three centuries, and the records include one report of 29 whales killed in Cape Cod Bay in a single day during January 1700. Based on incomplete historical whaling data, Reeves and Mitchell could conclude only that there were at least hundreds of right whales present in the western North Atlantic during the late 1600s. Reeves et al. (1992) plotted a series of population trajectories using historical data, assuming a present-day population size of 350 animals. The results suggested that there may have been at least 1,000 right whales in the population during the early to mid-1600s, with the greatest population decline occurring in the early 1700s. The authors cautioned, however, that the record of removals is incomplete, the results
were preliminary, and refinements are required. Based on back calculations using the present population size and growth rate, the population may have numbered fewer than 100 individuals by 1935 when international protection for right whales came into effect (Hain 1975; Reeves et al. 1992; Kenney et al. 1995). However, little is known about the population dynamics of right whales in the intervening years.

Minimum Population Estimate

The western North Atlantic population size was estimated to be at least 396 individuals in 2007 based on a census of individual whales identified using photo-identification techniques. This value is a minimum and does not include animals that were alive prior to 2007, but not recorded in the individual sightings database as seen during 1 December 2004 to 6 July 2010 (note that matching of photos taken during 2008-2010 was not complete at the time the data were received). It also does not include some calves known to be born during 2007, or any other individual whale seen during 2007 but not yet entered into the catalog.

Current Population Trend

The population growth rate reported for the period 1986-1992 by Knowlton et al. (1994) was 2.5% (CV=0.12), suggesting that the stock was showing signs of slow recovery. However, work by Caswell et al. (1999) suggested that crude survival probability declined from about 0.99 in the early 1980s to about 0.94 in the late 1990s. The decline was statistically significant. Additional work conducted in 1999 was reviewed by the IWC workshop on status and trends in this population (Best et al. 2001); the workshop concluded based on several analytical approaches that survival had indeed declined in the 1990s. Although capture heterogeneity could negatively bias survival estimates, the workshop concluded that this factor could not account for the entire observed decline, which appeared to be particularly marked in adult females. Another workshop was convened by NMFS in September 2002, and reached similar conclusions regarding the decline in the population (Clapham 2002).

An increase in mortality in 2004 and 2005 was cause for serious concern (Kraus et al. 2005). Calculations based on demographic data through 1999 (Fujiiwara and Caswell 2001) indicated that this mortality rate increase would reduce population growth by approximately 10% per year (Kraus et al. 2005). Of those mortalities, six were adult females, three of which were carrying near-term fetuses. Furthermore, four of these females were just starting to bear calves, losing their complete lifetime reproduction potential.

Despite the preceding, examination of the minimum number alive population index calculated from the individual sightings database, as it existed on 6 July 2010, for the years 1990-2007 (Figure 1) suggests a positive trend in population size. These data reveal a significant increase in the number of catalogued whales alive during this period, but with significant variation due to apparent losses exceeding gains during 1998-99. Mean growth rate for the period was 2.4%.

![Figure 1. Minimum number alive (a) and crude annual growth rate (b) for cataloged North Atlantic right whales. Minimum number (N) of cataloged individuals known to be alive in any given year includes all whales known to be alive prior to that year and seen in that year or subsequently plus all whales newly cataloged that year. It does not include calves born that year or any other individuals not yet cataloged. Mean crude growth rate (dashed line) is the exponentiated mean of log_e ([N_{i+1}-N_i]/N_i) for each year (i).](image-url)
The minimum number alive may increase slightly in later years as analysis of the backlog of unmatched but high-quality photographs proceeds. For example, the minimum number alive for 2002 was calculated to be 313 from a 15 June 2006 data set and revised to 325 using the 30 May 2007 data set.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

During 1980-1992, 145 calves were born to 65 identified cows. The number of calves born annually ranged from 5 to 17, with a mean of 11.2 (SE=0.90). The reproductively active female pool was static at approximately 51 individuals during 1987-1992. Mean calving interval, based on 86 records, was 3.67 years. There was an indication that calving intervals may have been increasing over time, although the trend was not statistically significant (P=0.083) (Knowlton *et al.* 1994).

Total reported calf production and calf mortalities from 1993 to 2009 are shown below in Table 1. The mean calf production for this seventeen year period was 17.2 (15.3-19.4; 95% C.I.). During the 2004 and 2005 calving seasons three adult females were found dead with near-term fetuses.

An updated analysis of calving intervals through the 1997/1998 season suggests that the mean calving interval increased since 1992 from 3.67 years to more than 5 years, a significant trend (Kraus *et al.* 2001). This conclusion was supported by modeling work reviewed by the IWC workshop on status and trends in this population (Best *et al.* 2001); the workshop agreed that calving intervals had indeed increased and further that the reproductive rate was approximately half that reported from studied populations of southern right whales, *E. australis*. A workshop on possible causes of reproductive failure was held in April 2000 (Reeves *et al.* 2001). Factors considered included contaminants, biotoxins, nutrition/food limitation, disease, and inbreeding problems. While no conclusions were reached, a research plan to further investigate this topic was developed. Analyses completed since that workshop found that in the most recent years, calving intervals were closer to 3 years (Kraus *et al.* 2007).

An analysis of the age structure of this population suggests that it contains a smaller proportion of juvenile whales than expected (Hamilton *et al.* 1998; Best *et al.* 2001), which may reflect lowered recruitment and/or high juvenile mortality. In addition, it is possible that the apparently low reproductive rate is due in part to an unstable age structure or to reproductive senescence on the part of some females. However, few data are available on either factor and senescence has not been documented for any baleen whale.

The maximum net productivity rate is unknown for this stock. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04. This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow *et al.* 1995).

<table>
<thead>
<tr>
<th>Year</th>
<th>Reported calf production</th>
<th>Reported calf mortalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>1994</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>1995</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>1996</td>
<td>22</td>
<td>3</td>
</tr>
<tr>
<td>1997</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>1998</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>1999</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>2000</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2001</td>
<td>31</td>
<td>4</td>
</tr>
<tr>
<td>2002</td>
<td>21</td>
<td>2</td>
</tr>
<tr>
<td>2003</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>2004</td>
<td>17</td>
<td>1</td>
</tr>
<tr>
<td>2005</td>
<td>28</td>
<td>0</td>
</tr>
<tr>
<td>2006</td>
<td>19</td>
<td>2</td>
</tr>
<tr>
<td>2007</td>
<td>23</td>
<td>2</td>
</tr>
<tr>
<td>2008</td>
<td>23</td>
<td>2</td>
</tr>
<tr>
<td>2009</td>
<td>39</td>
<td>1</td>
</tr>
</tbody>
</table>

a. includes December of the previous year
POTENTIAL BIOLOGICAL REMOVAL

Potential biological removal (PBR) is the product of minimum population size, one-half the maximum net productivity rate and a "recovery" factor for endangered, depleted, threatened stocks, or stocks of unknown status relative to OSP (MPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The recovery factor for right whales is 0.10 because this species is listed as endangered under the Endangered Species Act (ESA). The minimum population size is 396. The maximum productivity rate is 0.04, the default value for cetaceans. PBR for the Western Atlantic stock of North Atlantic Right whale is 0.8.

ANNUAL HUMAN-CAUSED SERIOUS INJURY AND MORTALITY

For the period 2005 through 2009, the minimum rate of annual human-caused mortality and serious injury to right whales averaged 2.4 per year (U.S. waters, 2.0; Canadian waters, 0.4). This is derived from two components: 1) incidental fishery entanglement records at 0.8 per year (U.S. waters, 0.8; Canadian waters, 0), and 2) ship strike records at 1.6 per year (U.S. waters, 1.2; Canadian waters, 0.4). Beginning with the 2001 Stock Assessment Report, Canadian records were incorporated into the mortality and serious injury rates of this report to reflect the effective range of this stock. It is also important to stress that serious injury determinations are made based upon the best available information; these determinations may change with the availability of new information (Cole et al. 2005). For the purposes of this report, discussion is primarily limited to those records considered confirmed human-caused mortalities or serious injuries. For more information on determinations for this period, see Henry et al. (2011).

Background

The details of a particular mortality or serious injury record often require a degree of interpretation. The assigned cause is based on the best judgment of the available data; additional information may result in revisions. When reviewing Table 2 below, several factors should be considered: 1) a ship strike or entanglement may occur at some distance from the reported location; 2) the mortality or injury may involve multiple factors; for example, whales that have been both ship struck and entangled are not uncommon; 3) the actual vessel or gear type/source is often uncertain; and 4) in entanglements, several types of gear may be involved.

The serious injury determinations are susceptible to revision. There are several records where a struck and injured whale was re-sighted later, apparently healthy, or where an entangled or partially disentangled whale was re-sighted later free of gear. The reverse may also be true: a whale initially appearing in good condition after being struck or entangled is later re-sighted and found to have been seriously injured by the event. Entanglements of juvenile whales are typically considered serious injuries because the constriction on the animal is likely to become increasingly lethal as the whale grows (Cole et al. 2005; Nelson et al. 2007).

A serious injury was defined in 50 CFR part 229.2 as an injury that is likely to lead to mortality. We therefore limited the serious injury designation to only those reports that had substantiated evidence that the injury, whether from entanglement or vessel collision, was likely to lead to the whale’s death (Cole et al. 2005; Nelson et al. 2007; Glass et al. 2008; Glass et al. 2010; Henry et al. 2011). Determinations of serious injury were made on a case-by-case basis following recommendations from the workshop conducted in 1997 on differentiating serious and non-serious injuries (Angliss and DeMaster 1998). Injuries that impeded a whale’s locomotion or feeding were not considered serious injuries unless they were likely to be fatal in the foreseeable future. There was no forecasting of how the entanglement or injury may increase the whale’s susceptibility to further injury, namely from additional entanglements or vessel collisions. This conservative approach likely underestimates serious injury rates.

With these caveats, the total minimum detected annual average human-induced mortality and serious injury incurred by this stock (including fishery and non-fishery related causes) is 2.4 right whales per year (U.S. waters 2.0; Canadian waters, 0.4). As with entanglements, some injury or mortality due to ship strikes is almost certainly undetected, particularly in offshore waters. Decomposed and/or unexamined animals (e.g., carcases reported but not retrieved or necropsied) represent lost data, some of which may relate to human impacts. For these reasons, the estimate of 2.4 right whales per year must be regarded as derived from minimum count (Henry et al. 2011).

Further, the small population size and low annual reproductive rate of right whales suggest that human sources of mortality may have a greater effect relative to population growth rates than for other whales. The principal factors believed to be retarding growth and recovery of the population are ship strikes and entanglement with fishing gear. Between 1970 and 1999, a total of 45 right whale mortalities was recorded (IWC [International Whaling Commission] 1999; Knowlton and Kraus 2001; Glass et al. 2009). Of these, 13 (28.9%) were neonates that were believed to have died from perinatal complications or other natural causes. Of the remainder, 16 (35.6%) resulted from ship strikes, 3 (6.7%) were related to entanglement in fishing gear (in two cases lobster gear, and one gillnet gear), and 13 (28.9%) were of unknown cause. At a minimum, therefore, 42.2% of the observed total for the period and 50% of the 32 non-calf deaths were attributable to human impacts (calves accounted for three deaths from ship
strikes). Young animals, ages 0-4 years, are apparently the most impacted portion of the population (Kraus 1990).

Finally, entanglement or minor vessel collisions may not kill an animal directly, but may weaken or otherwise affect it so that it is more likely to become vulnerable to further injury. Such was apparently the case with the two-year-old right whale killed by a ship off Amelia Island, Florida in March 1991 after having carried gillnet gear wrapped around its tail region since the previous summer (Kenney and Kraus 1993). A similar fate befell right whale #2220, found dead on Cape Cod in 1996.

Fishery-Related Serious Injury and Mortality

Reports of mortality and serious injury relative to PBR as well as total human impacts are contained in records maintained by the New England Aquarium and the NMFS Northeast and Southeast Regional Offices (Table 2). From 2005 through 2009, 4 of 12 records of mortality or serious injury (including records from both USA and Canadian waters) involved entanglement or fishery interactions. For this time frame, the average reported mortality and serious injury to right whales due to fishery entanglement was 0.8 whales per year (U.S. waters, 0.8; Canadian waters, 0). Information from an entanglement event often does not include the detail necessary to assign the entanglements to a particular fishery or location.

Although disentanglement is either unsuccessful or not possible for the majority of cases, during the period 2005 through 2009, there were at least three documented cases of entanglements for which the intervention of disentanglement teams averted a likely serious-injury determination. On 3 December 2005, #3445—the 2004 calf of #2145—was first sighted off Brunswick, Georgia, with line across its back and around its right flipper. Over 300 feet of trailing line was removed. This whale was resighted on 12 June 2006, apparently gear-free. An adult female, #2029, first sighted entangled in the Great South Channel on 9 March 2007, may have avoided serious injury due to being partially disentangled on 18 September 2007 by researchers in the Bay of Fundy, Canada. On 8 December 2008, #3294 was successfully disentangled. Sometimes, even with disentanglement, an animal may die of injuries sustained from fishing gear. A female yearling right whale, #3107 was first sighted with gear wrapping its caudal peduncle on 6 July 2002 near Briar Island, Nova Scotia. Although the gear was removed on 1 September by the New England Aquarium disentanglement team, and the animal seen alive on an aerial survey on 1 October, its carcase washed ashore at Nantucket on 12 October, 2002 with deep entanglement injuries on the caudal peduncle.

The only bycatch of a right whale observed by the Northeast Fisheries Observer Program was in the pelagic drift gillnet fishery in 1993. No mortalities or serious injuries have been documented in any of the other fisheries monitored by NMFS.

Entanglement records from 1990 through 2009 maintained by NMFS Northeast Regional Office (NMFS, unpublished data) included 94 confirmed right whale entanglements, including right whales in weirs, gillnets, and trailing line and buoys. Because whales often free themselves of gear following an entanglement event, scarring may be a better indicator of fisheries interaction than entanglement records. In an analysis of the scarification of right whales, 338 of 447 (75.6%) whales examined during 1980-2002 were scarred at least once by fishing gear (Knowlton et al. 2005). Further research using the North Atlantic Right Whale Catalogue has indicated that, annually, between 14% and 51% of right whales are involved in entanglements (Knowlton et al. 2005). Incidents of entanglements in groundfish gillnet gear, cod traps, and herring weirs in waters of Atlantic Canada and the U.S. east coast were summarized by Read (1994). In six records of right whales that were entangled in groundfish gillnet gear in the Bay of Fundy and Gulf of Maine between 1975 and 1990, the whales were either released or escaped on their own, although several whales were observed carrying net or line fragments. A right whale mother and calf were released alive from a herring weir in the Bay of Fundy in 1976.

For all areas, specific details of right whale entanglement in fishing gear are often lacking. When direct or indirect mortality occurs, some carcases come ashore and are subsequently examined, or are reported as "floaters" at sea. The number of unreported and unexamined carcases is unknown, but may be significant in the case of floaters. More information is needed about fisheries interactions and where they occur.

Other Mortality

Ship strikes are a major cause of mortality and injury to right whales (Kraus 1990; Knowlton and Kraus 2001). Records from 2005 through 2009 have been summarized in Table 2. For this time frame, the average reported mortality and serious injury to right whales due to ship strikes was 1.6 whales per year (U.S. waters, 1.2; Canadian waters, 0.4).
Table 2. Confirmed human-caused mortality and serious injury records of North Atlantic right whales, January 2005 through December 2009.

<table>
<thead>
<tr>
<th>Date</th>
<th>Report Type</th>
<th>Age, Sex, ID, Length</th>
<th>Location</th>
<th>Assigned Cause: P=primary, S=secondary</th>
<th>Notes/Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ship strike</td>
<td>Entang./Fsh inter</td>
</tr>
<tr>
<td>1/12/2005</td>
<td>mortality</td>
<td>Adult Female #2143 13.1m</td>
<td>Cumberland Island, GA</td>
<td>P</td>
<td>Healed propeller wounds from strike as a calf reopened as a result of pregnancy</td>
</tr>
<tr>
<td>3/10/2005</td>
<td>serious injury</td>
<td>Adult Female #2425</td>
<td>Cumberland Island, GA</td>
<td>P</td>
<td>43 ft power yacht partially severed left fluke; resighted 9/4/05 in extremely poor condition, not seen since</td>
</tr>
<tr>
<td>4/28/2005</td>
<td>mortality</td>
<td>Adult Female #2617 14.7m</td>
<td>Monomoy Island, MA</td>
<td>P</td>
<td>Significant bruising and multiple vertebral fractures</td>
</tr>
<tr>
<td>1/10/2006</td>
<td>mortality</td>
<td>Calf Male 5.4m w/out fluke</td>
<td>Jacksonville, FL</td>
<td>P</td>
<td>Propeller lacerations associated with hemorrhaging and edema; flukes completely severed</td>
</tr>
<tr>
<td>1/22/2006</td>
<td>mortality</td>
<td>Calf Female 5.6m</td>
<td>off Ponte Vedra Beach, FL</td>
<td>P</td>
<td>Significant premortem lesions from entanglement in apparent monofilament netting; no gear present</td>
</tr>
<tr>
<td>3/11/2006</td>
<td>serious injury</td>
<td>Yearling Male #3522</td>
<td>Off Cumberland Island, GA</td>
<td>P</td>
<td>11 propeller lacerations across dorsal surface; not sighted since</td>
</tr>
<tr>
<td>7/24/2006</td>
<td>mortality</td>
<td>age unknown Female 9.6m</td>
<td>Campobello Island, NB</td>
<td>P</td>
<td>Propeller lacerations through blubber, into muscle and ribs</td>
</tr>
<tr>
<td>8/24/2006</td>
<td>mortality</td>
<td>Adult Female 14.7m</td>
<td>Roseway Basin, NS</td>
<td>P</td>
<td>16 fractured vertebrae; dorsal blubber bruise from head to genital region</td>
</tr>
<tr>
<td>12/30/2006</td>
<td>mortality</td>
<td>Yearling Male #3508 12.6m</td>
<td>off Brunswick, GA</td>
<td>P</td>
<td>20 propeller lacerations along right side of head and back with associated hemorrhaging</td>
</tr>
<tr>
<td>3/31/2007</td>
<td>mortality</td>
<td>Calf Male 7.7m</td>
<td>Outer Banks, NC</td>
<td>P</td>
<td>Edema associated with flipper and dorsal & ventral thoracic musculature; epidermal abrasion indicated entangling body and flipper wraps; no gear recovered</td>
</tr>
<tr>
<td>Date</td>
<td>Injury</td>
<td>Sex</td>
<td>Location</td>
<td>Status</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>-------</td>
<td>--------------</td>
<td>-------------------------------</td>
<td></td>
</tr>
<tr>
<td>1/14/2009</td>
<td>serious</td>
<td>unknown</td>
<td>off Brunswick, GA</td>
<td>Partial disentanglement 03/06/2008; not seen since; embedded wrap in rostrum & lip removed; decline in health; gear analysis pending</td>
<td></td>
</tr>
<tr>
<td>1/27/2009</td>
<td>serious</td>
<td>Male</td>
<td>Cape Lookout Shoals, NC</td>
<td>Live stranded w/ spinal scoliosis; euthanized; necropsy determined scoliosis due to entanglement and not congenital; entanglement wounds chronically infected; no gear recovered</td>
<td></td>
</tr>
</tbody>
</table>

a. The date sighted and location provided in the table are not necessarily when or where the serious injury or mortality occurred; rather, this information indicates when and where the whale was first reported beached, entangled, or injured.

b. National guidelines for determining what constitutes a serious injury had not been finalized at the time of this evaluation. Interim criteria as established by NERO/NMFS have been used here. Some assignments may change as new information becomes available and/or when national standards are established (see Henry et al. 2011; due to new information slight differences exist between the table included herein and the referenced document).

c. Additional information which was not included in previous reports.

STATUS OF STOCK

The size of this stock is considered to be extremely low relative to OSP in the U.S. Atlantic EEZ, and this species is listed as endangered under the ESA. The North Atlantic right whale is considered one of the most critically endangered populations of large whales in the world (Clapham et al. 1999). A Recovery Plan has been published for the North Atlantic right whale and is in effect (NMFS [National Marine Fisheries Service] 2005). NMFS is presently engaged in evaluating the need for critical habitat designation for the North Atlantic right whale. Under a prior listing as northern right whale, three critical habitats, Cape Cod Bay/Massachusetts Bay, Great South Channel, and the Southeastern U.S., were designated by NMFS (59 FR 28793, June 3, 1994). Two additional critical habitat areas in Canadian waters, Grand Manan Basin and Roseway Basin, were identified in Canada’s final recovery strategy for the North Atlantic right whale (Brown et al. 2009). A National Marine Fisheries Service ESA status review in 1996 concluded that the western North Atlantic population remains endangered. This conclusion was reinforced by the International Whaling Commission (Best et al. 2001), which expressed grave concern regarding the status of this stock. Relative to populations of southern right whales, there are also concerns about growth rate, percentage of reproductive females, and calving intervals in this population. The total level of human-caused mortality and serious injury is unknown, but reported human-caused mortality and serious injury was a minimum of 2.4 right whales per year from 2005 through 2009. Given that PBR has been set to 0.8, no mortality or serious injury for this stock can be considered insignificant. This is a strategic stock because the average annual human-related mortality and serious injury exceeds PBR, and also because the North Atlantic right whale is an endangered species.

REFERENCES CITED

HUMPBACK WHALE (Megaptera novaeangliae): Gulf of Maine Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

In the western North Atlantic, humpback whales feed during spring, summer and fall over a geographic range encompassing the eastern coast of the United States (including the Gulf of Maine), the Gulf of St. Lawrence, Newfoundland/Labrador, and western Greenland (Katona and Beard 1990). Other North Atlantic feeding grounds occur off Iceland and northern Norway, including off Bear Island and Jan Mayen (Christensen et al. 1992; Palsbøll et al. 1997). These six regions represent relatively discrete subpopulations, fidelity to which is determined matrilineally (Clapham and Mayo 1987). Genetic analysis of mitochondrial DNA (mtDNA) has indicated that this fidelity has persisted over an evolutionary timescale in at least the Icelandic and Norwegian feeding grounds (Palsbøll et al. 1995; Larsen et al. 1996). Previously, the North Atlantic humpback whale population was treated as a single stock for management purposes (Waring et al. 1999). Indeed, earlier genetic analyses (Palsbøll et al. 1995), based upon relatively small sample sizes, had failed to discriminate among the four western North Atlantic feeding areas. However, genetic analyses often reflect a timescale of thousands of years, well beyond those commonly used by managers. Accordingly, the decision was made to reclassify the Gulf of Maine as a separate stock (Waring et al. 2000); this was based upon the strong fidelity by individual whales to this region, and the attendant assumption that, were this subpopulation wiped out, repopulation by immigration from adjacent areas would not occur on any reasonable management timescale. This reclassification has subsequently been supported by new genetic analyses based upon a much larger collection of samples than those utilized by Palsbøll et al. (1995). These analyses have found significant differences in mtDNA haplotype frequencies among whales sampled in four western feeding areas, including the Gulf of Maine (Palsbøll et al. 2001). During the 2002 Comprehensive Assessment of North Atlantic humpback whales, the International Whaling Commission acknowledged the evidence for treating the Gulf of Maine as a separate management unit (IWC 2002).

During the summers of 1998 and 1999, the Northeast Fisheries Science Center conducted surveys for humpback whales on the Scotian Shelf to establish the occurrence and population identity of the animals found in this region, which lies between the well-studied populations of the Gulf of Maine and Newfoundland. Photographs from both surveys have now been compared to both the overall North Atlantic Humpback Whale Catalogue and a large regional catalogue from the Gulf of Maine (maintained by the College of the Atlantic and the Provincetown Center for Coastal Studies, respectively); this work is summarized in Clapham et al. (2003). The match rate between the Scotian Shelf and the Gulf of Maine was 27% (14 of 52 Scotian Shelf individuals from both years). Comparable rates of exchange were obtained from the southern (28%, n=10 of 36 whales) and northern (27%, n=4 of 15 whales) ends of the Scotian Shelf, despite the additional distance of nearly 100 nautical miles (one whale was observed in

Figure 1. Distribution of humpback whale sightings from NEFSC and SEFSC shipboard and aerial surveys during the summers of 1998, 1999, 2002, 2004, 2006, and 2007. Isobaths are the 100-m, 1000-m and 4000-m depth contours.
both areas). In contrast, all of the 36 humpback whales identified by the same NMFS surveys elsewhere in the Gulf of Maine (including Georges Bank, southwestern Nova Scotia and the Bay of Fundy) had been previously observed in the Gulf of Maine region. The sighting histories of the 14 Scotian Shelf whales matched to the Gulf of Maine suggested that many of them were transient through the latter area. There were no matches between the Scotian Shelf and any other North Atlantic feeding ground, except the Gulf of Maine; however, instructive comparisons are compromised by the often low sampling effort in other regions in recent years. Overall, it appears that the northern range of many members of the Gulf of Maine stock does not extend onto the Scotian Shelf.

During winter, whales from most North Atlantic feeding areas (including the Gulf of Maine) mate and calve in the West Indies, where spatial and genetic mixing among feeding groups occurs (Katona and Beard 1990; Clapham et al. 1993; Palsbøll et al. 1997; Stevick et al. 1998). A few whales likely using eastern North Atlantic feeding areas migrate to the Cape Verde Islands (Reiner et al. 1996; Wenzel et al. 2009). In the West Indies, the majority of whales are found in the waters of the Dominican Republic, notably on Silver Bank and Navidad Bank, and in Samana Bay (Balcomb and Nichols 1982; Whitehead and Moore 1982; Mattila et al. 1989; Mattila et al. 1994). Humpback whales are also found at much lower densities throughout the remainder of the Antillean arc, from Puerto Rico to the coast of Venezuela (Winn et al. 1975; Levenson and Leapley 1978; Price 1985; Mattila and Clapham 1989).

Not all whales migrate to the West Indies every winter, and significant numbers of animals are found in mid- and high-latitude regions at this time (Clapham et al. 1993; Swingle et al. 1993). An increased number of sightings of humpback whales in the vicinity of the Chesapeake and Delaware Bays occurred in 1992 (Swingle et al. 1993). Wiley et al. (1995) reported that 38 humpback whale strandings occurred during 1985-1992 in the U.S. mid-Atlantic and southeastern states. Humpback whale strandings increased, particularly along the Virginia and North Carolina coasts, and most stranded animals were sexually immature; in addition, the small size of many of these whales strongly suggested that they had only recently separated from their mothers. Wiley et al. (1995) concluded that these areas were becoming an increasingly important habitat for juvenile humpback whales and that anthropogenic factors may negatively impact whales in this area. There have also been a number of wintertime humpback sightings in coastal waters of the southeastern U.S. (NMFS unpublished data; New England Aquarium unpublished data). Whether the increased numbers of sightings represent a distributional change, or are simply due to an increase in sighting effort and/or whale abundance, is unknown.

A key question with regard to humpback whales off the southeastern and mid-Atlantic states is their population identity. This topic was investigated using fluke photographs of living and dead whales observed in the region (Barco et al. 2002). In this study, photographs of 40 whales (alive or dead) were of sufficient quality to be compared to catalogs from the Gulf of Maine (i.e., the closest feeding ground) and other areas in the North Atlantic. Of 21 live whales, 9 (43%) matched to the Gulf of Maine, 4 (19%) to Newfoundland and 1 (4.8%) to the Gulf of St. Lawrence. Of 19 dead humpbacks, 6 (31.6%) were known Gulf of Maine whales. Although the population composition of the mid-Atlantic is apparently dominated by Gulf of Maine whales, lack of recent photographic effort in Newfoundland makes it likely that the observed match rates under-represent the true presence of Canadian whales in the region. Barco et al. (2002) suggested that the mid-Atlantic region primarily represents a supplemental winter feeding ground used by humpbacks.

In New England waters, feeding is the principal activity of humpback whales, and their distribution in this region has been largely correlated to abundance of prey species, although behavior and bottom topography are factors influencing foraging strategy (Payne et al. 1986, 1990). Humpback whales are frequently piscivorous when in New England waters, feeding on herring (Clupea harengus), sand lance (Ammodytes spp.), and other small fishes. In the northern Gulf of Maine, euphausiids are also frequently taken (Paquet et al. 1997). Commercial depletion of herring and mackerel led to an increase in sand lance in the southwestern Gulf of Maine in the mid-1970s with a concurrent decrease in humpback whale abundance in the northern Gulf of Maine. Humpback whales were denser over the sandy shoals in the southwestern Gulf of Maine favored by the sand lance during much of the late 1970s and early 1980s, and humpback distribution appeared to have shifted to this area (Payne et al. 1986). An apparent reversal began in the mid-1980s, and herring and mackerel increased as sand lance again decreased (Fogarty et al. 1991). Humpback whale abundance in the northern Gulf of Maine increased markedly during 1992-1993, along with a major influx of herring (P. Stevick, pers. comm.). Humpback whales were few in nearshore Massachusetts waters in the 1992-1993 summer seasons. They were more abundant in the offshore waters of Cultivator Shoal and on the Northeast Peak on Georges Bank and on Jefferson Ledge; these latter areas are traditional locations of herring occurrence. In 1996 and 1997, sand lance and therefore humpback whales were once again abundant in the Stellwagen Bank area. However, unlike previous cycles, when an increase in sand lance corresponded to a decrease in herring, herring remained relatively abundant in the northern Gulf of Maine, and humpbacks correspondingly continued to occupy this portion of the habitat, where they also fed on euphausiids (Wienrich et al. 1997).
patterns in humpback foraging behavior have been shown to correlate with diel patterns in sand lance behavior (Friedlaender et al. 2009).

In early 1992, a major research program known as the Years of the North Atlantic Humpback (YONAH) (Smith et al. 1999) was initiated. This was a large-scale, intensive study of humpback whales throughout almost their entire North Atlantic range, from the West Indies to the Arctic. During two primary years of field work, photographs for individual identification and biopsy samples for genetic analysis were collected from summer feeding areas and from the breeding grounds in the West Indies. Additional samples were collected from certain areas in other years. Results pertaining to the estimation of abundance and to genetic population structure are summarized below.

POPULATION SIZE

North Atlantic Population

The overall North Atlantic population (including the Gulf of Maine), derived from genetic tagging data collected by the YONAH project on the breeding grounds, was estimated to be 4,894 males (95% CI=3,374-7,123) and 2,804 females (95% CI=1,776-4,463) (Palsbøll et al. 1997). Because the sex ratio in this population is known to be even (Palsbøll et al. 1997), the excess of males is presumed a result of sampling bias, lower rates of migration among females, or sex-specific habitat partitioning in the West Indies; whatever the reason, the combined total is an underestimate of overall population size. Photographic mark-recapture analyses from the YONAH project provided an ocean-basin-wide estimate of 11,570 animals during 1992/1993 (CV=0.068, Stevick et al. 2003), and an additional genotype-based analysis yielded a similar but less precise estimate of 10,400 whales (CV=0.138, 95% CI=8,000 to 13,600) (Smith et al. 1999). In the northeastern North Atlantic, Oien (2001) estimated from sighting survey data that there were 889 (CV=0.32) humpback whales in the Barents and Norwegian Seas region.

As part of a large-scale assessment called More of North Atlantic Humpbacks (MoNAH) project, extensive sampling was conducted on humpbacks in the Gulf of Maine/Scotian Shelf region and the primary wintering ground on Silver Bank during 2004-2005. These data are being analyzed along with additional data from the Gulf of Maine to estimate abundance and refine knowledge of the North Atlantic humpback whales’ population structure. The work is intended to update the YONAH population assessment.

Gulf of Maine stock - earlier estimates

Please see Appendix IV for earlier estimates. As recommended in the GAMMS Workshop Report (Wade and Angliss 1997), if estimates are older than eight years PBR is undetermined.

Gulf of Maine Stock - Recent surveys and abundance estimates

An abundance estimate of 359 (CV=0.75) humpback whales was obtained from a line-transect sighting survey conducted from 12 June to 4 August 2004 by a ship and plane. The 2004 survey covered a small portion of the habitat (6,180 km of trackline), from the 100-m depth contour on the southern Georges Bank to the lower Bay of Fundy; while the Scotian Shelf south of Nova Scotia was not surveyed.

An abundance estimate of 847 animals (CV=0.55) was derived from a line-transect sighting survey conducted during August 2006, which covered 10,676 km of trackline from the 2000-m depth contour on the southern edge of Georges Bank to the upper Bay of Fundy and to the Gulf of St. Lawrence. (Table 1; Palka pers. comm.) Some evidence exists to support a 25% exchange rate between Scotian shelf animals and those in the Gulf of Maine (Clapham et al. 2003), which suggest that a 25% correction factor be applied to the humpback population estimate from the Scotian Shelf stratum. Because the Scotian Shelf was surveyed in only 2006, the 25% correction factor was applied to only the 2006 abundance estimate.

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normally distributed best abundance estimate. This is equivalent to the 20th percentile of the log-normal distribution as specified by Wade and Angliss (1997). The best estimate of abundance for Gulf of Maine humpback whales is 847 animals (CV=0.55). The minimum population estimate for this stock is 549 animals.
Table 1. Summary of abundance estimates for Gulf of Maine humpback whales with month, year, and area covered during each abundance survey, and resulting abundance estimate (\(N_{\text{best}}\)) and coefficient of variation (CV).

<table>
<thead>
<tr>
<th>Month/Year</th>
<th>Type</th>
<th>(N_{\text{best}})</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jun-Jul 2004</td>
<td>Gulf of Maine to lower Bay of Fundy</td>
<td>359</td>
<td>0.75</td>
</tr>
<tr>
<td>Aug 2006</td>
<td>S. Gulf of Maine to upper Bay of Fundy to Gulf of St. Lawrence</td>
<td>847</td>
<td>0.55</td>
</tr>
</tbody>
</table>

Current Population Trend

As detailed below, current data suggest that the Gulf of Maine humpback whale stock is steadily increasing in size. This is consistent with an estimated average trend of 3.1% (SE=0.005) in the North Atlantic population overall for the period 1979-1993 (Stevick et al. 2003), although there are no feeding-area-specific estimates.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Barlow and Clapham (1997), applying an interbirth interval model to photographic mark-recapture data, estimated the population growth rate of the Gulf of Maine humpback whale stock at 6.5% (CV=0.012). Maximum net productivity is unknown for this population, although a theoretical maximum for any humpback population can be calculated using known values for biological parameters (Brandão et al. 2000; Clapham et al. 2001). For the Gulf of Maine stock, data supplied by Barlow and Clapham (1997) and Clapham et al. (1995) give values of 0.96 for survival rate, 6 years as mean age at first parturition, 0.5 as the proportion of females, and 0.42 for annual pregnancy rate. From this, a maximum population growth rate of 0.072 is obtained according to the method described by Brandão et al. (2000). This suggests that the observed rate of 6.5% (Barlow and Clapham 1997) is close to the maximum for this stock.

Clapham et al. (2003) updated the Barlow and Clapham (1997) analysis using data from the period 1992 to 2000. The population growth estimate was either 0% (for a calf survival rate of 0.51) or 4.0% (for a calf survival rate of 0.875). Although confidence limits were not provided (because maturation parameters could not be estimated), both estimates of population growth rate are outside the 95% confidence intervals of the previous estimate of 6.5% for the period 1979 to 1991 (Barlow and Clapham 1997). More recent work by Robbins (2007) places apparent survival of calves at 0.664 (95% CI: 0.517-0.784), a value intermediate between those used by Barlow and Clapham (1997).

In light of the uncertainty accompanying the more recent estimates of population growth rate for the Gulf of Maine stock, the maximum net productivity rate was assumed to be the default value of 0.04 for cetaceans (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum productivity rate, and a "recovery" factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size for the Gulf of Maine stock is 549 whales. The maximum productivity rate is the default value of 0.04. The "recovery" factor, which accounts for endangered, depleted, or threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP) is assumed to be 0.10 because this stock is listed as an endangered species under the Endangered Species Act (ESA). PBR for the Gulf of Maine humpback whale stock is 1.1 whales.

ANNUAL HUMAN-CAUSED SERIOUS INJURY AND MORTALITY

For the period 2005 through 2009, the minimum annual rate of human-caused mortality and serious injury to the Gulf of Maine humpback whale stock averaged 5.2 animals per year (U.S. waters, 4.8; Canadian waters, 0.4). This value includes incidental fishery interaction records, 3.8 (U.S. waters, 3.4; Canadian waters, 0.4); and records of vessel collisions, 1.4 (U.S. waters, 1.4; Canadian waters, 0.0) (Henry et al. 2011).

In contrast to stock assessment reports before 2007, these averages include humpback mortalities and serious injuries that occurred in the southeastern and mid-Atlantic states that could not be confirmed as involving members of the Gulf of Maine stock. In past reports, only events involving whales confirmed to be members of the Gulf of Maine stock were counted against the PBR. Starting in the 2007 report, we assumed whales were from the Gulf of Maine unless they were identified as members of another stock. At the time of this writing, no whale was identified as a member of another stock. These determinations may change with the availability of new information. Canadian
records were incorporated into the mortality and serious injury rates, to reflect the effective range of this stock as described above. For the purposes of this report, discussion is primarily limited to those records considered confirmed human-caused mortalities or serious injuries.

Serious injury was defined in 50 CFR part 229.2 as an injury that is likely to lead to mortality. We therefore limited serious injury designations to only those reports that had substantiated evidence that the injury, whether from entanglement or vessel collision, was likely to lead to the whale’s death. Determinations of serious injury were made on a case-by-case basis following recommendations from the workshop conducted in 1997 on differentiating serious and non-serious injuries (Angliss and DeMaster 1998). Injuries that impeded a whale’s locomotion or feeding were not considered serious injuries unless they were likely to be fatal in the foreseeable future. There was no forecasting of how the entanglement or injury might increase the whale’s susceptibility to further injury, namely from additional entanglements or vessel collisions. For these reasons, the human impacts listed in this report represent a minimum estimate.

To better assess human impacts (both vessel collision and gear entanglement) there needs to be greater emphasis on the timely recovery of carcasses and complete necropsies. The literature and review of records described here suggest that there are human impacts beyond those recorded in the data assessed for serious injury and mortality. For example, a study of entanglement-related scarring on the caudal peduncle of 134 individual humpback whales in the Gulf of Maine suggested that between 48% and 65% had experienced entanglements (Robbins and Mattila 2001). Decomposed and/or unexamined animals (e.g., carcasses reported but not retrieved or no necropsy performed) represent 'lost data', some of which may relate to human impacts.

Background

As with right whales, human impacts (vessel collisions and entanglements) may be slowing recovery of the humpback whale population. Of 20 dead humpback whales (principally in the mid-Atlantic, where decomposition did not preclude examination for human impacts), Wiley *et al.* (1995) reported that six (30%) had major injuries possibly attributable to ship strikes, and five (25%) had injuries consistent with entanglement in fishing gear. One whale displayed scars that may have been caused by both ship strike and entanglement. Thus, 60% of the whale carcasses suitable for examination showed signs that anthropogenic factors may have contributed to, or been responsible for, their death. Wiley *et al.* (1995) further reported that all stranded animals were sexually immature, suggesting a winter or migratory segregation and/or that juvenile animals are more susceptible to human impacts.

An updated analysis of humpback whale mortalities from the mid-Atlantic states region was produced by Barco *et al.* (2002). Between 1990 and 2000, there were 52 known humpback whale mortalities in the waters of the U.S. mid-Atlantic states. Inspection of length data from 48 of these whales (18 females, 22 males, and 8 of unknown sex) suggested that 39 (81.2%) were first-year animals, 7 (14.6%) were immature and 2 (4.2%) were adults. However, sighting histories of five of the dead whales indicate that some were small for their age, and histories of live whales further indicate that the proportion of mature whales in the mid-Atlantic may be higher than suggested by the stranded sample.

Robbins and Mattila (2001) reported that males were more likely to be entangled than females. Their scarring data suggested that yearlings were more likely than other age classes to be involved in entanglements. Humpback whale entanglements also occur in relatively high numbers in Canadian waters. Reports of interactions with fixed fishing gear set for groundfish around Newfoundland averaged 365 annually from 1979 to 1987 (range 174-813). An average of 50 humpback whale entanglements (range 26-66) was reported annually between 1979 and 1988, and 12 of 66 humpback whales entangled in 1988 died (Lien *et al.* 1988). Two humpbacks were reported entangled in fishing gear in Newfoundland and Labrador waters in 2005. One towed away the gear and was not re-sighted, and the other was released alive (Ledwell and Huntington 2006). Eighty-four humpbacks were reported entangled in fishing gear in Newfoundland and Labrador from 2000 to 2006 (W. Ledwell, pers. comm.). Volgenau *et al.* (1995) reported that in Newfoundland and Labrador, cod traps caused the most entanglements and entanglement mortalities (21%) of humpbacks between 1979 and 1992. They also reported that gillnets were the primary cause of entanglements and entanglement mortalities (20%) of humpbacks in the Gulf of Maine between 1975 and 1990. One humpback whale was reported released alive (status unknown) from a herring weir off Grand Manan in 2009 (H. Koopman, UNC Wilmington, pers. comm.).

As reported by Wiley *et al.* (1995), serious injuries possibly attributable to ship strikes are more common and probably more serious than those from entanglements. In the NMFS records for 2005 through 2009, there are 7 reports of mortalities as a result of collision with a vessel. No whale involved in the recorded vessel collisions had been identified as a member of a stock other than the Gulf of Maine stock at the time of this writing (Henry *et al.* 2011).
Fishery-Related Serious Injuries and Mortalities

A description of fisheries is provided in Appendix III. Two mortalities were observed in the pelagic drift gillnet fishery, one in 1993 and the other in 1995. In winter 1993, a juvenile humpback was observed entangled and dead in a pelagic drift gillnet along the 200-m isobath northeast of Cape Hatteras. In early summer 1995, a humpback was entangled and dead in a pelagic drift gillnet on southwestern Georges Bank. Additional reports of mortality and serious injury, as well as description of total human impacts, are contained in records maintained by NMFS. A number of these records (11 entanglements involving lobster pot/trap gear) from the 1990-1994 period were the basis used to reclassify the lobster fishery (62 FR 33, Jan. 2, 1997). Large whale entanglements are rarely observed during fisheries sampling operations. However, during 2008, 3 humpback whales were observed as incidental bycatch: 2 in gillnet gear (1 no serious injury; 1 undetermined) and 1 in a purse seine (released alive).

For this report, the records of dead, injured, and/or entangled humpbacks (found either stranded or at sea) for the period 2005 through 2009 were reviewed. Entanglement accounted for six mortalities and 13 serious injuries and was a secondary cause of mortality on another animal. With no evidence to the contrary, all events were assumed to involve members of the Gulf of Maine stock. While these records are not statistically quantifiable in the same way as observer fishery records, they provide some indication of the minimum frequency of entanglements.

<table>
<thead>
<tr>
<th>Date</th>
<th>Report Type</th>
<th>Age, Sex, ID, Length</th>
<th>Location</th>
<th>Assigned Cause: P=primary, S=secondary</th>
<th>Notes/Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/9/2006</td>
<td>mortality</td>
<td>Adult Female #8667 14.0m</td>
<td>off Charleston, SC</td>
<td>P</td>
<td>Extensive muscle hemorrhaging; rib fractures; dislocated flipper on left side of animal</td>
</tr>
<tr>
<td>3/17/2006</td>
<td>mortality</td>
<td>Juvenile Female 10.0m</td>
<td>Virginia Beach, VA</td>
<td>P</td>
<td>Crushed cranium and fractured mandible; hemorrhaging associated with fractures; ventral lacerations consistent with propeller wounds</td>
</tr>
<tr>
<td>3/25/2006</td>
<td>serious injury</td>
<td>Juvenile sex unknown 8m (est)</td>
<td>Flagler Beach, FL (confirmed Canadian gear)</td>
<td>P</td>
<td>Heavy cyamid load; emaciated; spinal deformity that may or may not have been caused by the entanglement; gear recovered included line and buoys and was identified as Canadian lobster pot gear</td>
</tr>
<tr>
<td>8/6/2006</td>
<td>serious injury</td>
<td>age & sex unknown</td>
<td>Georges Bank</td>
<td>P</td>
<td>Multiple constricting wraps around head; line cutting into upper lip; wraps around both flippers; no gear recovered</td>
</tr>
<tr>
<td>8/23/2006</td>
<td>serious injury</td>
<td>age & sex unknown 12m (est)</td>
<td>Great South Channel</td>
<td>P</td>
<td>Flukes necrotic and nearly severed as a result of entanglement; pale skin and emaciated; gear recovered included heavy line and wire trap</td>
</tr>
<tr>
<td>09/06/06</td>
<td>mortality</td>
<td>age & sex unknown</td>
<td>East of Cape Cod, MA</td>
<td>P</td>
<td>Whale entangled through mouth, continuing back to multiple wraps around peduncle; no gear recovered</td>
</tr>
<tr>
<td>Date</td>
<td>Event Type</td>
<td>Age & Sex</td>
<td>Location</td>
<td>Pathology</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>-----------</td>
<td>-------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>09/27/06</td>
<td>injury</td>
<td>age & sex unknown</td>
<td>off Cape May, NJ</td>
<td>Line anchored in mouthline & crosses over back; extent of entanglement unknown but animal is emaciated</td>
<td></td>
</tr>
<tr>
<td>10/15/2006</td>
<td>mortality</td>
<td>Juvenile Female 10.1m</td>
<td>off Fenwick Island, DE</td>
<td>Large laceration, penetrating through the bone, across rostrum with accompanying fractures; no gear, but marks around right flipper consistent with entanglement; subdermal hemorrhaging and bone trauma at entanglement point</td>
<td></td>
</tr>
<tr>
<td>1/27/2007</td>
<td>injury</td>
<td>age & sex unknown</td>
<td>off Beach Haven, NJ</td>
<td>Body wrap likely to become constricting; random cyamid patches; thin body condition; probable flipper wraps; no gear recovered</td>
<td></td>
</tr>
<tr>
<td>5/10/2007</td>
<td>mortality</td>
<td>Adult Female 12.5m</td>
<td>off Wachapreague, VA</td>
<td>Cranium shattered, hemorrhaging on left lateral side midway between flippers & fluke</td>
<td></td>
</tr>
<tr>
<td>5/13/2007</td>
<td>mortality</td>
<td>Juvenile Male 9.3m</td>
<td>Rockport, MA</td>
<td>Areas of hemorrhaging indicate major blunt trauma to chest, neck, & head</td>
<td></td>
</tr>
<tr>
<td>6/23/2007</td>
<td>injury</td>
<td>age unknown Male "Egg Toss"</td>
<td>Wildcat Knoll</td>
<td>Body wrap of gear imbedded; no gear recovered</td>
<td></td>
</tr>
<tr>
<td>6/24/2007</td>
<td>mortality</td>
<td>Juvenile Female "Tofu" 9.9m</td>
<td>Stellwagen Bank</td>
<td>Subdermal hemorrhaging involving blubber, fascia, & muscle extending from/around the insertion of the right flipper ventrally to the axilla</td>
<td></td>
</tr>
<tr>
<td>12/21/2007</td>
<td>mortality</td>
<td>age unknown Male 9.4m</td>
<td>Ocean Sands, Corolla, NC</td>
<td>Documented wrapped in gear, gear removed without permission prior to necropsy; external lesions at flukes, flippers, mouth, dorsal fin, dorsal keel, & ventral pleats consistent with gillnet entanglement; emaciated; no gear recovered</td>
<td></td>
</tr>
<tr>
<td>1/6/2008</td>
<td>injury</td>
<td>age & sex unknown 10m (est)</td>
<td>off Cape Lookout, NC</td>
<td>Constricting line cutting into right flipper in several places; heavy cyamid load; emaciated; no gear recovered</td>
<td></td>
</tr>
<tr>
<td>5/30/2008</td>
<td>mortality</td>
<td>age & sex unknown</td>
<td>Georges Bank</td>
<td>Constricting body wraps, one wrap under lower jaw; open wound on right flipper; no gear recovered</td>
<td></td>
</tr>
<tr>
<td>6/9/2008</td>
<td>mortality</td>
<td>age & sex unknown</td>
<td>Georges Bank</td>
<td>Constricting body wrap; gear analysis pending</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Type</td>
<td>Age & Sex</td>
<td>Location</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>---------------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>7/8/2008</td>
<td>serious injury</td>
<td>Adult Female "Estuary"</td>
<td>off Nauset, MA</td>
<td>Cuts were made, but no gear was removed; emaciated; moderate cyamid coverage; deep wounds in fluke blades from gear; hunched over position maintained after cuts were made to the gear; gear analysis pending</td>
<td></td>
</tr>
<tr>
<td>8/13/2008</td>
<td>serious injury</td>
<td>age & sex unknown 10m (est)</td>
<td>off NJ</td>
<td>Partial disentanglement; emaciated; lethargic; heavy cyamid load; gear analysis pending</td>
<td></td>
</tr>
<tr>
<td>8/21/2008</td>
<td>serious injury</td>
<td>age & sex unknown</td>
<td>off Chatham, MA</td>
<td>Evidence of decline in health; no gear recovered</td>
<td></td>
</tr>
<tr>
<td>11/4/2008</td>
<td>mortality</td>
<td>Juvenile Male 10.1m</td>
<td>Assateague Island, MD</td>
<td>Cranial fractures with associated hemorrhaging</td>
<td></td>
</tr>
<tr>
<td>2/8/2009</td>
<td>mortality</td>
<td>age unknown Male 9.7m</td>
<td>Cape Fear, NC</td>
<td>Evidence of entanglement at mouthline, peduncle, and flipper with associated hemorrhaging; emaciated; no gear present</td>
<td></td>
</tr>
<tr>
<td>2/16/2009</td>
<td>mortality</td>
<td>Juvenile Male 10.0m</td>
<td>Nags Head, NC</td>
<td>Evidence of entanglement involving anchoring or heavily weighted gear with associated hemorrhaging; no gear present</td>
<td></td>
</tr>
<tr>
<td>2/25/2009</td>
<td>serious injury</td>
<td>Juvenile sex unknown</td>
<td>off Sandy Hook, NJ</td>
<td>Disentangled from anchoring pot gear; maintained hunched body position post-disentanglement; gear analysis pending</td>
<td></td>
</tr>
<tr>
<td>6/9/2009</td>
<td>serious injury</td>
<td>age & sex unknown</td>
<td>Stellwagen Bank</td>
<td>Constricting body wrap just forward of the flippers; no gear recovered</td>
<td></td>
</tr>
<tr>
<td>12/9/2009</td>
<td>serious injury</td>
<td>age & sex unknown</td>
<td>off Jacksonville, FL (confirmed Canadian gear)</td>
<td>Disentangled; evidence of health decline; Canadian gilnet gear</td>
<td></td>
</tr>
</tbody>
</table>

- The date sighted and location provided in the table are not necessarily when or where the serious injury or mortality occurred; rather, this information indicates when and where the whale was first reported beached, entangled, or injured.
- National guidelines for determining what constitutes a serious injury had not been finalized at the time of this evaluation. Interim criteria as established by NERO/NMFS have been used here. Some assignments may change as new information becomes available and/or when national standards are established (see Henry et al. 2011; due to new information slight differences exist between the table included herein and the referenced document).
- Record was added after review of carcasses sighted on 08/20/06 and 09/06/06. Previous reports stated these were the same animal. Recent review could not confirm the resight, therefore they are now being treated as two separate events. There was inconclusive evidence with regard to the carcass on 08/20/06 to determine mortality caused by entanglement.
- Gear origin not included in previous reports.
- Record was added after review of event; not included in previous reports.
Other Mortality

Between November 1987 and January 1988, at least 14 humpback whales died after consuming Atlantic mackerel containing a dinoflagellate saxitoxin (Geraci et al. 1989). The whales subsequently stranded or were recovered in the vicinity of Cape Cod Bay and Nantucket Sound, and it is highly likely that other unrecorded mortalities occurred during this event. During the first six months of 1990, seven dead juvenile (7.6 to 9.1 m long) humpback whales stranded between North Carolina and New Jersey. The significance of these strandings is unknown.

In July 2003, an Unusual Mortality Event (UME) was invoked in offshore waters when an estimated minimum of 12-15 humpback whales died in the vicinity of the Northeast Peak of Georges Bank. Preliminary tests of samples taken from some of these whales were positive for domoic acid at low levels, but it is currently unknown what levels would affect the whales and therefore no definitive conclusions can yet be drawn regarding the cause of this event or its effect on the status of the Gulf of Maine humpback whale population. Seven humpback whales were considered part of a large whale UME in New England in 2005. Twenty-one dead humpback whales found between 10 July and 31 December 2006 triggered a humpback whale UME declaration. Causes of these UME events have not been determined.

STATUS OF STOCK

NMFS recently concluded a global humpback whale status review, the report of which is expected to be completed in 2012. NMFS will include the relevant results of this review in the SARs when they are available. The status of the North Atlantic humpback whale population was the topic of an International Whaling Commission Comprehensive Assessment in June 2001, and again in May 2002. These meetings conducted a detailed review of all aspects of the population and made recommendations for further research (IWC 2002). Although recent estimates of abundance indicate continued population growth, the size of the humpback whale stock may be below OSP in the U.S. Atlantic EEZ. This is a strategic stock because the humpback whale is listed as an endangered species under the ESA. A Recovery Plan was published and is in effect (NMFS 1991). There are insufficient data to reliably determine current population trends for humpback whales in the North Atlantic overall. The average annual rate of population increase was estimated at 3.1% (SE=0.005, Stevick et al. 2003). An analysis of demographic parameters for the Gulf of Maine (Clapham et al. 2003) suggested a lower rate of increase than the 6.5% reported by Barlow and Clapham (1997), but results may have been confounded by distribution shifts. The total level of U.S. fishery-caused mortality and serious injury is unknown, but reported levels are more than 10% of the calculated PBR and, therefore, cannot be considered to be insignificant or approaching zero mortality and serious injury rate. This is a strategic stock because the average annual human-related mortality and serious injury exceeds PBR, and because the North Atlantic humpback whale is an endangered species.

REFERENCES CITED

FIN WHALE (*Balaenoptera physalus*): Western North Atlantic Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

The Scientific Committee of the International Whaling Commission (IWC) has proposed stock boundaries for North Atlantic fin whales. Fin whales off the eastern United States, Nova Scotia and the southeastern coast of Newfoundland are believed to constitute a single stock under the present IWC scheme (Donovan 1991). However, the stock identity of North Atlantic fin whales has received relatively little attention, and whether the current stock boundaries define biologically isolated units has long been uncertain. The existence of a subpopulation structure was suggested by local depletions that resulted from commercial overharvesting (Mizroch *et al.* 1984).

A genetic study conducted by Bérubé *et al.* (1998) using both mitochondrial and nuclear DNA provided strong support for an earlier population model proposed by Kellogg (1929) and others. This postulates the existence of several subpopulations of fin whales in the North Atlantic and Mediterranean with limited gene flow among them. Bérubé *et al.* (1998) also proposed that the North Atlantic population showed recent divergence due to climatic changes (i.e., postglacial expansion), as well as substructuring over even relatively short distances. The genetic data are consistent with the idea that different subpopulations use the same feeding ground, a hypothesis that was also originally proposed by Kellogg (1929).

Fin whales are common in waters of the U. S. Atlantic Exclusive Economic Zone (EEZ), principally from Cape Hatteras northward (Figure 1). Fin whales accounted for 46% of the large whales and 24% of all cetaceans sighted over the continental shelf during aerial surveys (CETAP 1982) between Cape Hatteras and Nova Scotia during 1978-82. While much remains unknown, the magnitude of the ecological role of the fin whale is impressive. In this region fin whales are probably the dominant large cetacean species during all seasons, having the largest standing stock, the largest food requirements, and therefore the largest impact on the ecosystem of any cetacean species (Hain *et al.* 1992; Kenney *et al.* 1997).

New England waters represent a major feeding ground for fin whales. There is evidence of site fidelity by females, and perhaps some segregation by sexual, maturational or reproductive class in the feeding area (Agler *et al.* 1993). Seipt *et al.* (1990) reported that 49% of fin whales sighted on the Massachusetts Bay area feeding grounds were resighted within the same year, and 45% were resighted in multiple years. The authors suggested that fin whales on these grounds exhibited patterns of seasonal occurrence and annual return that in some respects were similar to those shown for humpback whales. This was reinforced by Clapham and Seipt (1991), who showed maternally-directed site fidelity for fin whales in the Gulf of Maine. Information on life history and vital rates is also available in data from the Canadian fishery, 1965-1971 (Mitchell 1974). In seven years, 3,528 fin whales were taken at three whaling stations. The station at Blandford, Nova Scotia, took 1,402 fin whales.

Figure 1. Distribution of fin whale sightings from NEFSC and SEFSC shipboard and aerial surveys during the summers of 1998, 1999, 2002, 2004, 2006 and 2007. Isobaths are the 100-m, 1000-m and 4000-m depth contours.
Hain et al. (1992), based on an analysis of neonate stranding data, suggested that calving takes place during October to January in latitudes of the U.S. mid-Atlantic region; however, it is unknown where calving, mating, and wintering occurs for most of the population. Results from the Navy's SOSUS program (Clark 1995) indicate a substantial deep-ocean distribution of fin whales. It is likely that fin whales occurring in the U.S. Atlantic EEZ undergo migrations into Canadian waters, open-ocean areas, and perhaps even subtropical or tropical regions. However, the popular notion that entire fin whale populations make distinct annual migrations like some other mysticetes has questionable support in the data; in the North Pacific, year-round monitoring of fin whale calls found no evidence for large-scale migratory movements (Watkins et al. 2000).

POPULATION SIZE

The best abundance estimate available for the western North Atlantic fin whale stock is 3,985 (CV=0.24). This is the sum of the estimate derived from the August 2006 Gulf of Maine survey and the estimate derived from the July-August 2007 northern Labrador to Scotian Shelf survey. The abundance estimates of fin whales include a percentage of the estimate of animals identified as fin/sei whales (the two species being sometimes hard to distinguish). The percentage used is the ratio of positively identified fin whales to the total number of positively identified fin whales and positively identified sei whales.

Earlier abundance estimates

Please see Appendix IV for earlier abundance estimates. As recommended in the GAMMS Workshop Report (Wade and Angliss 1997), estimates older than eight years are deemed unreliable and should not be used for PBR determinations.

Recent surveys and abundance estimates

An abundance estimate of 1,925 (CV=0.55) fin whales was derived from a line-transect sighting survey conducted during 12 June to 4 August 2004 by a ship and plane that surveyed 10,761 km of trackline in waters north of Maryland (38°N) (Table 1; Palka 2006). Shipboard data were collected using the two-independent-team line-transect method and analyzed using the modified direct-duplicate method (Palka 1995) accounting for biases due to school size and other potential covariates, reactive movements (Palka and Hammond 2001), and \(g(t) \), the probability of detecting a group on the trackline. Aerial data were collected using the Hibi circle-back line-transect method (Hibi 1999) and analyzed accounting for \(g(t) \) and biases due to school size and other potential covariates (Palka 2005). The value of \(g(t) \) used for this estimation was derived from the pooled 2002, 2004 and 2006 aerial survey data.

An abundance of 2,269 (CV=0.37) fin whales was estimated from an aerial survey conducted in August 2006 which covered 10,676 km of trackline in the region from the 2000-m depth contour on the southern edge of Georges Bank to the upper Bay of Fundy and to the entrance of the Gulf of St. Lawrence (Table 1; Palka pers. comm.). The value of \(g(t) \) used for this estimation was derived from the pooled 2002, 2004 and 2006 aerial survey data.

An abundance estimate of 1,716 (CV=0.26) fin whales was generated from the Canadian Trans North Atlantic Sighting Survey (TANASS) in July-August 2007. This aerial survey covered the area from northern Labrador to the Scotian Shelf, providing full coverage of the Atlantic Canadian coast. Estimates from this survey have not yet been corrected for availability and perception biases (Lawson and Gosselin 2009).

<table>
<thead>
<tr>
<th>Month/Year</th>
<th>Area</th>
<th>(N_{\text{best}})</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jun-July 2004</td>
<td>Gulf of Maine to lower Bay of Fundy</td>
<td>1,925</td>
<td>0.55</td>
</tr>
<tr>
<td>Aug 2006</td>
<td>S. Gulf of Maine to upper Bay of Fundy to Gulf of St. Lawrence</td>
<td>2,269</td>
<td>0.37</td>
</tr>
<tr>
<td>July-Aug 2007</td>
<td>N. Labrador to Scotian Shelf</td>
<td>1,716</td>
<td>0.26</td>
</tr>
<tr>
<td>Aug 2006+Jul-Aug 2007</td>
<td>S. Gulf of Maine to N. Labrador (COMBINED)</td>
<td>3,985</td>
<td>0.24</td>
</tr>
</tbody>
</table>

Table 1. Summary of recent abundance estimates for western North Atlantic fin whales with month, year, and area covered during each abundance survey, and resulting abundance estimate (\(N_{\text{best}} \)) and coefficient of variation (CV).
Minimum Population Estimate
The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the lognormally distributed best abundance estimate. This is equivalent to the 20th percentile of the log-normal distribution as specified by Wade and Angliss (1997). The best estimate of abundance for fin whales is 3,985(CV=0.24). The minimum population estimate for the western North Atlantic fin whale is 3,269.

Current Population Trend
There are insufficient data to determine population trends for this species.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES
Current and maximum net productivity rates are unknown for this stock. Based on photographically identified fin whales, Agler et al. (1993) estimated that the gross annual reproduction rate was at 8%, with a mean calving interval of 2.7 years.

For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04. This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL
Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum productivity rate, and a "recovery" factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is 3,269. The maximum productivity rate is 0.04, the default value for cetaceans. The "recovery" factor, which accounts for endangered, depleted, or threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP), is assumed to be 0.10 because the fin whale is listed as endangered under the Endangered Species Act (ESA). PBR for the western North Atlantic fin whale is 6.5.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY
For the period 2005 through 2009, the minimum annual rate of human-caused mortality and serious injury to fin whales was 2.6 per year (U.S. waters, 2.0; Canadian waters, 0.6). This value includes incidental fishery interaction records, 0.8 (U.S. waters, 0.6; Canadian waters, 0.2); and records of vessel collisions, 1.8 (U.S. waters, 1.4; Canadian waters, 0.4)(Henry et al. 2011). Detected mortalities should not be considered an unbiased representation of human-caused mortality. Detections are haphazard and not the result of a designed sampling scheme. As such they represent a minimum estimate of human-caused mortality.

Fishery-Related Serious Injury and Mortality
No confirmed fishery-related mortalities or serious injuries of fin whales have been reported in the NMFS Sea Sampling bycatch database. A review of the records of stranded, floating or injured fin whales for the period 2005 through 2009 on file at NMFS found two records with substantial evidence of fishery interactions causing mortality, and two records resulting in serious injury (Table 2), which results in an annual rate of serious injury and mortality of 0.8 fin whales from fishery interactions. While these records are not statistically quantifiable in the same way as the observer fishery records, they give a minimum count of entanglements for the species.

<table>
<thead>
<tr>
<th>Date</th>
<th>Report Type</th>
<th>Age, Sex, Length</th>
<th>Location</th>
<th>Assigned Cause</th>
<th>Notes/Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/26/2005</td>
<td>mortality</td>
<td>Adult Female</td>
<td>off Virginia Beach, VA</td>
<td>P</td>
<td>Extensive hemorrhaging and vertebral fractures</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16.3m</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>Type</th>
<th>Category</th>
<th>Age & Sex</th>
<th>Location</th>
<th>Symptom</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/3/2005</td>
<td>mortality</td>
<td>Adultb Female 18.8m</td>
<td>Southampton, NY</td>
<td>P</td>
<td>Subdermal hemorrhaging</td>
<td></td>
</tr>
<tr>
<td>8/23/2005</td>
<td>mortality</td>
<td>Juvenileb Male 13.7m</td>
<td>Port Elizabeth, NJ</td>
<td>P</td>
<td>Fresh carcass on bow of ship; extensive hemorrhaging on right side of body</td>
<td></td>
</tr>
<tr>
<td>9/11/2005</td>
<td>mortality</td>
<td>Juvenileb Male 11.0m</td>
<td>Bonne-Esperance, QC</td>
<td>P</td>
<td>Bottom jaw completely severed/broken</td>
<td></td>
</tr>
<tr>
<td>9/13/05c</td>
<td>mortality</td>
<td>age & sex unknown</td>
<td>Blanc Sablon, NL</td>
<td>P</td>
<td>Lower jaw broken associated with massive areas of bruising</td>
<td></td>
</tr>
<tr>
<td>9/17/2006</td>
<td>serious injury</td>
<td>age & sex unknown 18m (est)</td>
<td>off Mt. Desert Rock, ME</td>
<td>P</td>
<td>Pale skin overall; cyanid load at point of attachment; emaciated; no gear recovered</td>
<td></td>
</tr>
<tr>
<td>3/25/2007</td>
<td>mortality</td>
<td>age unknown Female 18.0m</td>
<td>Norfolk, VA</td>
<td>P</td>
<td>Extensive fracturing of ribs, skull, and vertebrae w/ associated hemorrhage & edema</td>
<td></td>
</tr>
<tr>
<td>5/24/2007</td>
<td>mortality</td>
<td>age unknown Male</td>
<td>Newark Bay, NJ</td>
<td>P</td>
<td>Hemorrhage (epaxial muscle, diaphragm, pleural lining) and multiple fractures of the ribs, vertebrae, & sternum and the trailing tissue of the animal was marked by propeller cuts</td>
<td></td>
</tr>
<tr>
<td>6/25/2007</td>
<td>serious injury</td>
<td>age & sex unknown</td>
<td>Great South Channel</td>
<td>P</td>
<td>Wrap on tail assoc w/ cyanid load; flippers & mouth involved; extremely emaciated; lethargic; no gear recovered</td>
<td></td>
</tr>
<tr>
<td>8/11/2007</td>
<td>mortality</td>
<td>age & sex unknown</td>
<td>Cabot Strait, NS</td>
<td>P</td>
<td>Constricting wrap around body, between the head and flippers; no gear recovered</td>
<td></td>
</tr>
<tr>
<td>9/26/2007</td>
<td>mortality</td>
<td>Juvenile Male 13m (est)</td>
<td>off Martha’s Vineyard, MA</td>
<td>P</td>
<td>Freshly dead, scavenged carcass with gear present; evidence of multiple body wraps with associated hemorrhaging; no gear recovered</td>
<td></td>
</tr>
<tr>
<td>7/2/2008</td>
<td>mortality</td>
<td>age unknown Male 14.8m</td>
<td>Barnegat Inlet, NJ</td>
<td>P</td>
<td>Vertebral fractures with associated hemorrhaging; hemorrhaging around ball joint of right flipper</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Mortality</td>
<td>Age & Sex Unknown</td>
<td>Location</td>
<td>P</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>-------------------</td>
<td>------------------</td>
<td>---</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>10/1/2009</td>
<td>mortality</td>
<td>age & sex unknown</td>
<td>Port Elizabeth, NJ</td>
<td>P</td>
<td>Fresh carcass with broken flipper, hematoma, and abrasions</td>
<td></td>
</tr>
</tbody>
</table>

- a. The date sighted and location provided in the table are not necessarily when or where the serious injury or mortality occurred; rather, this information indicates when and where the whale was first reported beached, entangled, or injured.
- b. The gender and length were misreported in the 2006 Stock Assessment Report. This table shows the correct values.
- c. Additional record which was not included in previous reports.

Other Mortality

After reviewing NMFS records for 2005 through 2009, nine were found that had sufficient information to confirm the cause of death as collisions with vessels (Table 2; Henry et al. 2011). These records constitute an annual rate of serious injury or mortality of 1.8 fin whales from vessel collisions. The number of fin whales taken at three whaling stations in Canada from 1965 to 1971 totaled 3,528 whales (Mitchell 1974).

STATUS OF STOCK

The status of this stock relative to OSP in the U.S. Atlantic EEZ is unknown, but the species is listed as endangered under the ESA. There are insufficient data to determine the population trend for fin whales. The total level of human-caused mortality and serious injury is unknown. NMFS records represent coverage of only a portion of the area surveyed for the population estimate for the stock. The total U.S. fishery-related mortality and serious injury for this stock derived from the available records is not less than 10% of the calculated PBR, and therefore cannot be considered insignificant and approaching the ZMRG. This is a strategic stock because the fin whale is listed as an endangered species under the ESA.

REFERENCES CITED

SEI WHALE (*Balaenoptera borealis borealis*):
Nova Scotia Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

Mitchell and Chapman (1977) reviewed the sparse evidence on stock identity of northwest Atlantic sei whales, and suggested two stocks—a Nova Scotia stock and a Labrador Sea stock. The range of the Nova Scotia stock includes the continental shelf waters of the northeastern U.S., and extends northeastward to south of Newfoundland. The Scientific Committee of the International Whaling Committee (IWC), while adopting these general boundaries, noted that the stock identity of sei whales (and indeed all North Atlantic whales) was a major research problem (Donovan 1991). In the absence of evidence to the contrary, the proposed IWC stock definition is provisionally adopted, and the “Nova Scotia stock” is used here as the management unit for this stock assessment. The IWC boundaries for this stock are from the U.S. east coast to Cape Breton, Nova Scotia, thence east to longitude 42° W.

Indications are that, at least during the feeding season, a major portion of the Nova Scotia sei whale stock is centered in northerly waters, perhaps on the Scotian Shelf (Mitchell and Chapman 1977). The southern portion of the species' range during spring and summer includes the northern portions of the U.S. Atlantic Exclusive Economic Zone (EEZ) — the Gulf of Maine and Georges Bank. Spring is the period of greatest abundance in U.S. waters, with sightings concentrated along the eastern margin of Georges Bank and into the Northeast Channel area, and along the southwestern edge of Georges Bank in the area of Hydrographer Canyon (CETAP 1982). NMFS aerial surveys from 1999 on have found concentrations of sei and right whales along the northern edge of Georges Bank in the spring. The sei whale is often found in the deeper waters characteristic of the continental shelf edge region (Hain et al. 1985), and NMFS aerial surveys found substantial numbers of sei whales in this region, in particular south of Nantucket, in the spring of 2001. Similarly, Mitchell (1975) reported that sei whales off Nova Scotia were often distributed closer to the 2,000-m depth contour than were fin whales.

This general offshore pattern of sei whale distribution is disrupted during episodic incursions into shallower, more inshore waters. Although known to eat fish, sei whales (like right whales) are largely planktivorous, feeding primarily on euphausiids and copepods (Flinn et al. 2002). A review by prey preferences by Horwood (1987) showed that in the North Atlantic sei whales seem to prefer copepods over all other prey species. In Nova Scotia sampled stomachs from captured sei whales showed a clear preference for copepods between June and October, and euphausiids were taken only in May and November (Mitchell 1975). In years of reduced predation on copepods by other predators, and thus greater abundance of this prey source, sei whales are reported in more inshore locations, such as the Great South Channel (in 1987 and 1989) and Stellwagen Bank (in 1986) areas (R.D. Kenney, pers. comm.; Payne et al. 1990). An influx of sei whales into the southern Gulf of Maine occurred in the summer of 1986 (Schilling et al. 1993). Such episodes, often punctuated by years or even decades of absence from an area, have been

Figure 1. Distribution of sei whale sightings from NEFSC and SEFSC shipboard and aerial surveys during the summers of 1998, 1999, 2002, 2004, 2006 and 2007. Isobaths are the 100-m, 1000-m and 4000-m depth contours.
reported for sei whales from various places worldwide (Jonsgård and Darling 1977).

Based on analysis of records from the Blandford, Nova Scotia, whaling station, where 825 sei whales were taken between 1965 and 1972, Mitchell (1975) described two "runs" of sei whales, in June-July and in September-October. He speculated that the sei whale population migrates from south of Cape Cod and along the coast of eastern Canada in June and July, and returns on a southward migration again in September and October; however, such a migration remains unverified.

POPULATION SIZE

The total number of sei whales in the U.S. Atlantic EEZ is unknown. However, five abundance estimates are available for portions of the sei whale habitat: from Nova Scotia during the 1970s, in the U.S. Atlantic EEZ during the springs of 1979-1981, and in the U.S. and Canadian Atlantic EEZ during the summers of 2002, 2004, and 2006. The August 2004 abundance estimate (386) is considered the best available for the Nova Scotia stock of sei whales. However, this estimate must be considered conservative in view of the known range of the sei whale in the entire western North Atlantic, and the uncertainties regarding population structure and whale movements between surveyed and unsurveyed areas. The abundance estimates of sei whales include a percentage of the estimate of animals identified as fin/sei whales (the two species being sometimes hard to distinguish). The percentage used is the ratio of positively identified sei whales to the total of positively identified fin whales and positively identified sei whales.

Earlier abundance estimates

Please see appendix IV for earlier abundance estimates. As recommended in the GAMMS Workshop Report (Wade and Angliss 1997), estimates older than eight years are deemed unreliable and should not be used for PBR determinations.

Recent surveys and abundance estimates

An abundance estimate of 386 (CV=0.85) sei whales was derived from a line-transect sighting survey conducted during 12 June to 4 August 2004 by a ship and plane that surveyed 10,761 km of trackline in waters north of Maryland (38° N)(Table 1; Palka 2006). There were 6,180 km of trackline within known sei whale habitat, from the 100-m depth contour on southern Georges Bank to the lower Bay of Fundy. The Scotian shelf south of Nova Scotia was not surveyed. Shipboard data were collected using the two-independent-team line-transect method and analyzed using the modified direct-duplicate method (Palka 1995) accounting for biases due to school size and other potential covariates, reactive movements (Palka and Hammond 2001), and \(g(0) \), the probability of detecting a group on the trackline. Aerial data were collected using the Hibi circle-back line-transect method (Hibi 1999) and analyzed accounting for \(g(0) \) and biases due to school size and other potential covariates (Palka 2005). The value of \(g(0) \) used for this estimation was derived from the pooled 2002, 2004 and 2006 aerial survey data.

An abundance estimate of 207 (CV=0.62) sei whales was obtained from an aerial survey conducted in August 2006 which covered 10,676 km of trackline in the region from the 2000-m depth contour on the southern edge of Georges Bank to the upper Bay of Fundy and to the entrance of the Gulf of St. Lawrence (Table 1; Palka pers. comm.). The value of \(g(0) \) used for this estimation was derived from the pooled 2002, 2004 and 2006 aerial survey data.

<table>
<thead>
<tr>
<th>Table 1. Summary of recent abundance estimates for Nova Scotia sei whales with month, year, and area covered during each abundance survey, and resulting abundance estimate ((N_{best})) and coefficient of variation (CV).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Month/Year</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Jun-Jul 2004</td>
</tr>
<tr>
<td>Aug 2006</td>
</tr>
</tbody>
</table>

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-
normally distributed best abundance estimate. This is equivalent to the 20th percentile of the log-normal distribution as specified by (Wade and Angliss 1997). The best estimate of abundance for the Nova Scotia stock sei whales is 386 (CV=0.85). The minimum population estimate is 208.

Current Population Trend

A population trend analysis has not been done for this species.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04. This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum productivity rate, and a “recovery” factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is 208. The maximum productivity rate is 0.04, the default value for cetaceans. The “recovery” factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP) is assumed to be 0.10 because the sei whale is listed as endangered under the Endangered Species Act (ESA). PBR for the Nova Scotia stock of the sei whale is 0.4.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

For the period 2005 through 2009, the minimum annual rate of human-caused mortality and serious injury to sei whales was 1.2. This value includes incidental fishery interaction records, 0.6, and records of vessel collisions, 0.6 (Henry et al. 2011). Annual rates calculated from detected mortalities should not be considered an unbiased estimate of human-caused mortality. Detections are haphazard, incomplete and not the result of a designed sampling scheme. As such they represent a minimum estimate of human-caused mortality which is almost certainly biased low.

Fishery-Related Serious Injury and Mortality

No confirmed fishery-related mortalities or serious injuries of sei whales have been reported in the NMFS Sea Sampling bycatch database. A review of the records of stranded, floating or injured sei whales for the period 2005 through 2009 on file at NMFS found 3 records with substantial evidence of fishery interactions causing serious injury (Table 2), which results in an annual rate of serious injury and mortality of 0.6 sei whales from fishery interactions.

<table>
<thead>
<tr>
<th>Date</th>
<th>Report Type</th>
<th>Age, Sex, Length</th>
<th>Location</th>
<th>Assigned Cause: P=primary, S=secondary</th>
<th>Notes/Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>04/17/06</td>
<td>mortality</td>
<td>Juvenile Male 10.9m</td>
<td>Baltimore, MD</td>
<td>P</td>
<td>Brought in on bow of ship, freshly dead; massive hemorrhaging on right side; large blood clot behind head; several broken ribs</td>
</tr>
<tr>
<td>09/16/06</td>
<td>serious injury</td>
<td>age & sex unknown</td>
<td>Jeffreys Ledge</td>
<td>P</td>
<td>Constricting wrap cutting into skin; no gear recovered</td>
</tr>
<tr>
<td>05/30/07</td>
<td>mortality</td>
<td>Adult Female 14.4m</td>
<td>off Deer Island, MA</td>
<td>P</td>
<td>Broken left flipper, 8 vertebral processes, and 4 ribs; right flipper sheared off; lower jaw dislocated; hemorrhaging and/or edema associated with lower jaw and left</td>
</tr>
<tr>
<td>Date</td>
<td>Category</td>
<td>Age & Sex</td>
<td>Location</td>
<td>Flipper Region</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>------------------</td>
<td>-----------</td>
<td>---------------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>04/09/08</td>
<td>Serious injury</td>
<td>age & sex</td>
<td>Great South Channel</td>
<td>P Constricting wrap on fluke; skin sloughing; no gear recovered</td>
<td></td>
</tr>
<tr>
<td>06/29/08</td>
<td>Mortality</td>
<td>age & sex 15m (est)</td>
<td>Slacks Cove, New Brunswick</td>
<td>P Extensive entanglement evident; no gear present</td>
<td></td>
</tr>
<tr>
<td>5/19/2009</td>
<td>Mortality</td>
<td>Juvenile Male 12.7m</td>
<td>off Rehobeth Beach, DE</td>
<td>P Posterior portion of skull & right mandible fractured; hemorrhaging dorsal to left pectoral</td>
<td></td>
</tr>
</tbody>
</table>

a. The date sighted and location provided in the table are not necessarily when or where the serious injury or mortality occurred; rather, this information indicates when and where the whale was first reported beached, entangled, or injured.
b. National guidelines for determining what constitutes a serious injury have not been finalized. Interim criteria as established by NERO/NMFS (Nelson et al. 2007) have been used here. Some assignments may change as new information becomes available and/or when national standards are established.

Other Mortality
For the period 2005 through 2009 files at NMFS included three records with substantial evidence of vessel collisions causing serious injury or mortality (Table 2). Previous NMFS records of human-caused sei whale mortalities include one from 17 November 1994, when a sei whale carcass was observed on the bow of a container ship as it docked in Boston, Massachusetts, and one from 2 May 2001 when the carcass of a 13 m female sei whale slid off the bow of a ship arriving in New York harbor.

STATUS OF STOCK
The status of this stock relative to OSP in the U.S. Atlantic EEZ is unknown, but the species is listed as endangered under the ESA. There are insufficient data to determine population trends for sei whales. The total U.S. fishery-related mortality and serious injury for this stock derived from the available records is not less than 10% of the calculated PBR, and therefore cannot be considered insignificant and approaching the ZMRG. This is a strategic stock because the average annual human-related mortality and serious injury exceeds PBR, and because the sei whale is listed as an endangered species under the ESA.

REFERENCES CITED

MINKE WHALE (*Balaenoptera acutorostrata acutorostrata*): Canadian East Coast Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

Minke whales have a cosmopolitan distribution in temperate and tropical waters. In the North Atlantic, there are four recognized populations—Canadian East Coast, west Greenland, central North Atlantic, and northeastern North Atlantic (Donovan 1991). These divisions were defined by examining segregation by sex and length, catch distributions, sightings, marking data and pre-existing ICES boundaries. However, there were very few data from the Canadian East Coast population.

Minke whales off the eastern coast of the United States are considered to be part of the Canadian East Coast stock, which inhabits the area from the western half of the Davis Strait (45°W) to the Gulf of Mexico. The relationship between this stock and the other three stocks is uncertain. It is also uncertain if there are separate sub-stocks within the Canadian East Coast stock.

The minke whale is common and widely distributed within the U.S. Atlantic Exclusive Economic Zone (EEZ) (CETAP 1982). There appears to be a strong seasonal component to minke whale distribution. Spring and summer are times of relatively widespread and common occurrence, and when the whales are most abundant in New England waters. In New England waters during fall there are fewer minke whales, while during winter the species appears to be largely absent. Like most other baleen whales, minke whales generally occupy the continental shelf proper, rather than the continental shelf-edge region. Records summarized by Mitchell (1991) hint at a possible winter distribution in the West Indies, and in the mid-ocean south and east of Bermuda. As with several other cetacean species, the possibility of a deep-ocean component to the distribution of minke whales exists but remains unconfirmed.

POPULATION SIZE

The total number of minke whales in the Canadian East Coast population is unknown. However, multiple estimates are available for portions of the habitat (see Appendix IV for details on these surveys and estimates). The best recent abundance estimate for this stock is 8,987 (CV=0.32) (Table 2), which is the sum of the August 2006 U.S. survey (3,312 CV=0.74) and the July-August 2007 Canadian survey (5,675 CV=0.25).

Earlier estimates

For earlier abundance estimates please see Appendix IV.

Recent surveys and abundance estimates

An abundance estimate of 600 (CV=0.61) minke whales was obtained from a line-transect sighting survey conducted during 12 June to 4 August 2004 by a ship and plane that surveyed 6,180 km of trackline from the 100-m
depth contour on southern Georges Bank to the lower Bay of Fundy. The Scotian Shelf south of Nova Scotia was not surveyed (Table 1; Palka 2006). Shipboard data were collected using the two-independent-team line-transect method and analyzed using the modified direct-duplicate method (Palka 1995) accounting for biases due to school size and other potential covariates, reactive movements (Palka and Hammond 2001), and g(t), the probability of detecting a group on the trackline. Aerial data were collected using the Hiby circle-back line-transect method (Hiby 1999) and analyzed accounting for g(t) and biases due to school size and other potential covariates (Palka 2005). The value of g(t) used for this estimation was derived from the pooled 2002, 2004 and 2006 aerial survey data.

An abundance estimate of 3,312 (CV=0.74) minke whales was generated from an aerial survey conducted in August 2006 which surveyed 10,676 km of trackline in the region from the 2000-m depth contour on the southern edge of Georges Bank to the upper Bay of Fundy and to the entrance of the Gulf of St. Lawrence. (Table 1; Palka pers. comm.). The value of g(t) used for this estimation was derived from the pooled 2002, 2004 and 2006 aerial survey data.

An abundance estimate of 5,675 (95%CI=2,214-6,745) minke whales was generated from the Canadian Trans-North Atlantic Sighting Survey (TNASS) in July-August 2007. This survey covered from northern Labrador to the Scotian Shelf, providing full coverage of the Atlantic Canadian coast. Estimates from this survey have not yet been corrected for availability and perception biases (Lawson and Gosselin 2009).

<table>
<thead>
<tr>
<th>Month/Year</th>
<th>Area</th>
<th>N\text{\textsubscript{best}}</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jun-Jul 2004</td>
<td>Gulf of Maine to lower Bay of Fundy</td>
<td>600</td>
<td>0.61</td>
</tr>
<tr>
<td>Aug 2006</td>
<td>S. Gulf of Maine to upper Bay of Fundy to Gulf of St. Lawrence</td>
<td>3,312</td>
<td>0.74</td>
</tr>
<tr>
<td>Jul-Aug 2007</td>
<td>N. Labrador to Scotian Shelf</td>
<td>5,675</td>
<td>0.21-0.27</td>
</tr>
<tr>
<td>Aug 2006+ Jul-Aug 2007</td>
<td>S. Gulf of Maine to N. Labrador (COMBINED)</td>
<td>8,987</td>
<td>0.32</td>
</tr>
</tbody>
</table>

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normally distributed best abundance estimate. This is equivalent to the 20th percentile of the log-normal distribution as specified by Wade and Angliss (1997). The best estimate of abundance for minke whales is 8,987 animals (CV=0.32). The minimum population estimate for the Canadian East Coast minke whale is 6,909 animals.

Current Population Trend

A population trend analysis for this species has not been conducted.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. Life history parameters that could be used to estimate net productivity are that females mature between 6 and 8 years of age, and pregnancy rates are approximately 0.86 to 0.93. Based on these parameters, the calving interval is between 1 and 2 years. Calves are probably born during October to March after 10 to 11 months gestation and nursing lasts for less than 6 months. Maximum ages are not known, but for Southern Hemisphere minke whales maximum age appears to be about 50 years (IWC 1991; Katona et al. 1993).

For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04. This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum productivity rate, and a “recovery” factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The minimum
population size is 6,909. The maximum productivity rate is 0.04, the default value for cetaceans. The “recovery” factor, which accounts for endangered, depleted, or threatened stocks, or stocks of unknown status, relative to optimum sustainable population (OSP) is assumed to be 0.5 because this stock is of unknown status. PBR for the Canadian east coast minke whale is 69.

ANNUAL HUMAN-CAUSED MORTALITY AND INJURY

During 2005 to 2009, the total annual minimum detected average human-caused mortality and serious injury was 5.9 minke whales per year (3.5 (CV=0.34) minke whales per year from observed US fisheries, 0.8 minke whales per year (unknown CV) from U.S. fisheries using strandings and entanglement data, 1.2 (unknown CV) from Canadian fisheries using strandings and entanglement data, and 0.4 per year from U.S. ship strikes (Henry et al. 2011).

Data to estimate the mortality and serious injury of minke whales come from the Northeast Fisheries Science Center Observer Program and from records of strandings and entanglements in U.S. waters. For the purposes of this report, only those unobserved strandings and entanglement records considered confirmed human-caused mortalities or serious injuries are shown in Table 2, while mortalities and serious injuries recorded by the Observer Program are recorded in Table 3.

Detected mortalities in the strandings and entanglement data should not be considered an unbiased representation of human-caused mortality. Detections are haphazard and not the result of a designed sampling scheme. As such they represent a minimum estimate which is almost certainly biased low.

Fishery Information

Detailed fishery information is reported in Appendix III.

Earliest Interactions

Little information is available about fishery interactions that took place before the 1990s. Read (1994) reported that a minke whale was found dead in a Rhode Island fish trap in 1976. A minke whale was caught and released alive in the Japanese tuna longline fishery in 3,000 m of water, south of Lydonia Canyon on Georges Bank, in September 1986 (Waring et al. 1990).

Two minke whales were observed taken in the Northeast sink gillnet fishery. The take in July 1991, south of Penobscot Bay, Maine, was a mortality, and the whale taken in October 1992, off the coast of New Hampshire near Jeffreys Ledge, was released alive.

A minke whale was trapped and released alive from a herring weir off northern Maine in 1990.

Four minke whale mortalities were observed in the Atlantic pelagic drift gillnet fishery during 1995; the fishery closed in 1998.

One minke whale was reported caught in an Atlantic tuna purse seine off Stellwagen Bank in 1991 (D. Beach, NMFS NE Regional Office, pers. comm.) and another in 1996. The minke caught during 1991 was released uninjured after a crew member cut the rope wrapped around the tail. The minke whale caught during 1996 escaped by diving beneath the net.

One minke whale, reported in the strandings and entanglement database, was taken in a 6-inch gill net on 24 June 1998 off Long Island, New York. This take was assigned to the mid-Atlantic gillnet fishery. No minke whales have been taken in this fishery during observed trips in 1993 to 2009.

The strandings and entanglement database, maintained by the New England Aquarium and the Northeast Regional Office/NMFS, include 36 records of minke whales within U.S. waters for 1975-1992. The gear includes unspecified fishing nets, unspecified cables or lines, fish traps, weirs, seines, gillnets, and lobster gear. One confirmed entanglement was an immature female minke whale, entangled with line around the tail stock, which came ashore on the Jacksonville, Florida jetty on 31 January 1990 (R. Bonde, USFWS, Gainesville, FL, pers. comm.).

The strandings and entanglement database reported 7 minke whale mortalities and serious injuries that were attributed to the Northeast/Mid-Atlantic Lobster Trap/Pot fishery during 1990 to 1994; 1 in 1990 (possible serious injury), 2 in 1991 (1 mortality and 1 serious injury), 2 in 1992 (both mortalities), 1 in 1993 (serious injury) and 1 in 1994 (mortality) (1997 List of Fisheries 62 FR33, 2 January 1997). The one confirmed minke whale mortality during 1995 was attributed to the lobster fishery. No confirmed mortalities or serious injuries of minke whales occurred in 1996. From the four confirmed 1997 records, one minke whale mortality was attributed to the lobster trap fishery. In 2002, one minke whale mortality and one live release were attributed to this fishery. The 28 June 2003 mortality, while trapped in lobster gear, cannot be confirmed to have become entangled in the area, and so is not attributed to the fishery. Annual mortalities due to the Northeast/Mid-Atlantic Lobster Trap/Pot fishery, as
determined from strandings and entanglement records that have been audited, were 1 in 1991, 2 in 1992, 1 in 1994, 1 in 1995, 0 in 1996, 1 in 1997, 0 in 1998 to 2001, 1 in 2002, and 0 in 2003 through 2009.

U.S. Northeast Bottom Trawl

The fishery is active in New England waters in all seasons. Detailed fishery information is reported in Appendix III. One freshly dead minke whale was caught in 2004 on the northeastern tip of Georges Bank in US waters. Two dead minkes were reported by observers in 2008. Fisheries observer data from the years 2005 through 2009 were pooled and bycatch rates for minke whales were estimated using a stratified ratio-estimator. Estimated bycatch rates from the pooled fisheries observer data were expanded by annual (2005-2009) fisheries data collected from mandatory vessel trip reports. The estimated annual mortality (CV in parentheses) attributed to this fishery was 4.78 (0.75) for 2005, 3.71 (0.73) for 2006, 3.28 (0.72) for 2007, 2.86 (0.73) for 2008, 2.86 (0.75) for 2009. Annual average estimated minke whale mortality and serious injury from the Northeast bottom trawl fishery during 2005 to 2009 was 3.5 (CV=0.34)(Table 3).

Unknown Fisheries

The audited NE Regional Office/NMFS entanglement/stranding database contains records of minke whales, of which the confirmed mortalities and serious injuries from the last five years are reported in Table 2. Mortalities (and serious injuries) that were likely a result of a U.S. fishery interaction with an unknown fishery include 3 (0) in 1997, 3 (0) in 1999, 1 (1) in 2000, 2 (0) in 2001, 1 (0) in 2002, 5 (0) in 2003, 2 (0) in 2004, 0 (0) in 2005, 0 (0) in 2006, 1 (1) in 2007, 1 (0) in 2008, and 0 (1) in 2009 (Table 2). During 2005 to 2009, as determined from strandings and entanglement records, the minimum detected average annual mortality and serious injury is 0.8 minke whales per year in unknown U.S. fisheries (Table 2).

CANADA

Read (1994) reported interactions between minke whales and gillnets in Newfoundland and Labrador, in cod traps in Newfoundland, and in herring weirs in the Bay of Fundy. Hooker et al. (1997) summarized bycatch data from a Canadian fisheries observer program that placed observers on all foreign fishing vessels operating in Canadian waters, on between 25% and 40% of large Canadian fishing vessels (greater than 100 feet long), and on approximately 5% of smaller Canadian fishing vessels. During 1991 through 1996, no minke whales were observed taken.

Herring Weirs

During 1980 to 1990, 15 of 17 minke whales were released alive from herring weirs in the Bay of Fundy. During January 1991 to September 2002, 26 minke whales were trapped in herring weirs in the Bay of Fundy. Of these 26, 1 died (H. Koopman, pers. comm.) and several (number unknown) were released alive and unharmed (A. Westgate, pers. comm.). Four minkes were reported released alive from Gran Manan herring weirs in 2009 (H. Koopman pers. comm.).

Other Fisheries

Six minke whales were reported entangled during 1989 in the groundfish gillnet fishery in Newfoundland and Labrador (Read 1994). One of these animals escaped and was still towing gear, the remaining five animals died.

Salmon gillnets in Canada, now no longer used, had taken a few minke whales. In Newfoundland in 1979, one minke whale died in a salmon net. In Newfoundland and Labrador, between 1979 and 1990, it was estimated that 15% of the Canadian minke whale takes were in salmon gillnets. A total of 124 minke whale interactions were documented in cod traps, groundfish gillnets, salmon gillnets, other gillnets, and other traps. The salmon gillnet fishery ended in 1993 as a result of an agreement between the fishermen and North Atlantic Salmon Fund (Read 1994).

Five minke whales were entrapped and died in Newfoundland cod traps during 1989. The cod trap fishery closed in Newfoundland in 1993 due to the depleted groundfish resources (Read 1994).

In 2004, two minke whales were reported dead in entangled fishing gear off of Newfoundland and Labrador, one in a blackback flounder net, and one in crab gear (Ledwell and Huntington 2004). Only the flounder net animal had enough information to include it as a human-caused mortality. In 2005, four minke whales were reported entangled in fishing gear in Newfoundland and Labrador. Two (entangled in salmon net and mackerel trap gear) were released alive and two (involved with whelk pot and toad crab pot fisheries) were dead (Ledwell and Huntington 2006). The whelk pot mortality could not be conclusively attributed to human causes. In 2006, one
minke whale was reported dead in a mackerel trap off of Newfoundland (Ledwell and Huntington 2007). In 2007, four minke whales in Newfoundland and Labrador were reported entangled, but released alive (Ledwell and Huntington 2008). In 2008, four minke whales were reported entangled in Newfoundland and Labrador. Two of these were dead and two were released alive, though one of the live releases was listed as “condition uncertain” (Ledwell and Huntington 2009). In 2008, one minke was reported dead in an unknown fishery off of New Brunswick. In 2009, one minke whale was determined to have been seriously injured off of Quebec. Mortalities (and serious injuries) that were likely a result of an interaction with an unknown Canadian fishery include 1(0) in 2005, 1(0) in 2006, 0(0) in 2007, 3(0) in 2008, and 0 (1) in 2009. During 2005 to 2009, as determined from Canadian strandings and entanglement records, the minimum detected average annual mortality and serious injury was 1.2 minke whales per year in fisheries (Table 2).

<table>
<thead>
<tr>
<th>Datea</th>
<th>Report Typeb</th>
<th>Age, Sex, Length</th>
<th>Locationa</th>
<th>Assigned Cause: P=primary, S=secondary</th>
<th>Notes/Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ship strike</td>
<td>Entang./ Fsh. Inter.</td>
</tr>
<tr>
<td>5/23/2005</td>
<td>mortality</td>
<td>Juvenile Male 5.9m</td>
<td>Port Elizabeth, NJ</td>
<td>P</td>
<td>ribs shattered; liver ruptured; evidence of internal hemorrhaging</td>
</tr>
<tr>
<td>08/24/2005c</td>
<td>mortality</td>
<td>age & sex unknown</td>
<td>Bridgeport, New World Island, Newfoundland</td>
<td>P</td>
<td>Constricting gear through mouth with flipper and tail wraps; toad crab pots</td>
</tr>
<tr>
<td>09/22/2006c</td>
<td>mortality</td>
<td>age & sex unknown</td>
<td>Woods Cove, Great Northern Peninsula, Newfoundland</td>
<td>P</td>
<td>Anchored by tail in doorways of the gear; mackerel trap</td>
</tr>
<tr>
<td>7/16/2007</td>
<td>serious injury</td>
<td>age & sex unknown 10m (est)</td>
<td>Trescia, ME</td>
<td>P</td>
<td>Wrapped in gear and anchored; no gear recovered</td>
</tr>
<tr>
<td>8/5/2007</td>
<td>mortality</td>
<td>Juvenile Female 4.3m</td>
<td>Cape Cod Bay, MA</td>
<td>P</td>
<td>Chronic entanglement with severe emaciation and dehydration and loss of protein; line lacerated blubber layer across back and at flipper insertions; severe hemorrhage and necrosis of blubber at gear entanglement points; gear consists of 11/16” diameter floating rope</td>
</tr>
<tr>
<td>Date</td>
<td>Event</td>
<td>Age & Sex</td>
<td>Location</td>
<td>Cause of Mortality</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>-----------</td>
<td>-------------------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>6/14/2008</td>
<td>mortality</td>
<td>Juvenile Female 4.7m</td>
<td>Orleans, MA</td>
<td>Braided line impressions wrapped the body in 3 places and left a deep, hemorrhaged laceration across the rostrum and blowholes; hemorrhaged abrasions present on roof of mouth; wet, blood-filled lungs indicate drowning; no gear present</td>
<td></td>
</tr>
<tr>
<td>7/23/2008</td>
<td>mortality</td>
<td>age & sex unknown 7m (est)</td>
<td>Kelligrews, Newfoundland</td>
<td>Constricting wraps of gear on caudal peduncle; 5/8” polypropylene rope</td>
<td></td>
</tr>
<tr>
<td>7/26/2008</td>
<td>mortality</td>
<td>age & sex unknown 8m (est)</td>
<td>Conception Bay, Newfoundland</td>
<td>Constricting wraps of gear through mouth and around tail; blackback flounder nets</td>
<td></td>
</tr>
<tr>
<td>8/25/2008</td>
<td>mortality</td>
<td>age & sex unknown 8m (est)</td>
<td>off Richibucto Cape, New Brunswick</td>
<td>Evidence of constricting body wraps; gear not recovered</td>
<td></td>
</tr>
<tr>
<td>5/20/2009</td>
<td>mortality</td>
<td>Adult sex unknown 8m (est)</td>
<td>off Point Pleasant, NJ</td>
<td>Large hemorrhage at right pectoral</td>
<td></td>
</tr>
<tr>
<td>6/3/2009</td>
<td>serious injury</td>
<td>age & sex unknown</td>
<td>off Tadoussac, Quebec</td>
<td>Free-swimming with tight rostrum wrap; no gear recovered</td>
<td></td>
</tr>
<tr>
<td>8/11/2009</td>
<td>serious injury</td>
<td>age & sex unknown</td>
<td>off Plymouth, MA</td>
<td>Constricting wrap on rostrum & poor skin condition; no gear recovered</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Event</th>
<th>US waters</th>
<th>Canadian waters</th>
</tr>
</thead>
<tbody>
<tr>
<td>mortality</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>serious injury</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 3. Summary of the incidental mortality of Canadian East Coast stock of minke whales (*Balaenoptera acutorostrata acutorostrata*) by commercial fishery including the years sampled (Years), the type of data used (Data Type), the annual observer coverage (Observer Coverage), the mortalities recorded by on-board observers (Observed Mortality), the estimated annual mortality (Estimated Mortality), the estimated CV of the annual mortality (Estimated CVs) and the mean annual mortality (CV in parentheses).
<table>
<thead>
<tr>
<th>Fishery</th>
<th>Years</th>
<th>Data Type</th>
<th>Observer Coverage</th>
<th>Observed Serious Injury</th>
<th>Observed Mortality</th>
<th>Estimated Serious Injury</th>
<th>Estimated Mortality</th>
<th>Estimated Combined Mortality</th>
<th>Estimated CVs</th>
<th>Mean Annual Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northeast Bottom Trawl</td>
<td>05-09</td>
<td>Obs. Data Dealer Data VTR Data</td>
<td>.12, .06, .06, .08, .09</td>
<td>0, 0, 0, 0, 0</td>
<td>0, 0, 0, 0, 0</td>
<td>4.8, 3.7, 3.3, 2.9, 2.9</td>
<td>4.8, 3.7, 3.3, 2.9, 2.9</td>
<td>.75, .73, .72, .73, .75</td>
<td>3.5 (.34)</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.5 (.34)</td>
<td></td>
</tr>
</tbody>
</table>

a. Fisheries observer data from the years 2005 through 2009 were pooled and bycatch rates for minke whales were estimated using a stratified ratio-estimator. Estimated bycatch rates from the pooled fisheries observer data were expanded by annual (2005-2009) fisheries data collected from mandatory vessel trip reports.

Other Mortality

Minke whales have been and continue to be hunted in the North Atlantic. From the Canadian East Coast population, documented whaling occurred from 1948 to 1972 with a total kill of 1,103 animals (IWC 1992). Animals from other North Atlantic minke populations are presently still being harvested.

U.S.

Minke whales inhabit coastal waters during much of the year and are thus subject to collision with vessels. According to the NMFS/NER marine mammal entanglement and stranding database, on 7 July 1974, a necropsy of a minke whale suggested a vessel collision; on 15 March 1992, a juvenile female minke whale with propeller scars was found floating east of the St. Johns Channel entrance (R. Bonde, USFWS, Gainesville, FL, pers. comm.); and on 15 July 1996 the captain of a vessel reported hitting a minke whale offshore of Massachusetts. After reviewing this record, it was concluded the animal struck was not a serious injury or mortality. On 12 December 1998, a minke whale was struck and presumed killed by a whale-watching vessel in Cape Cod Bay off Massachusetts.

During 1999 to 2003, no minke whale was confirmed struck by a ship. During 2004 and 2005, one minke whale mortality was attributed to ship strike in each year (Table 2). During 2006 to 2008, no minke whale was confirmed struck by a ship. During 2009, one minke whale was confirmed dead due to a ship strike off of New Jersey. Thus, during 2005 to 2009, as determined from stranding and entanglement records, the minimum detected annual average was 0.4 minke whales per year struck by ships.

In October 2003, an Unusual Mortality Event was declared involving minke whales and harbor seals along the coast of Maine; since then, the number of minke whale stranding reports has returned to normal. Stranding mortalities and serious injuries that have been determined to be human-caused are included in Table 2 (Henry et al. 2011).

On 11 October 2009, the NOAA research vessel FSV Delaware II captured a minke whale during mid-water trawling operations associated with the 2009 Atlantic Herring Acoustics survey. Although brought on deck, the animal was released alive and appeared to exhibit healthy behavior upon release.

CANADA

The Nova Scotia Stranding Network documented whales and dolphins stranded on the coast of Nova Scotia between 1991 and 1996 (Hooker et al. 1997). Researchers with the Department of Fisheries and Oceans, Canada documented strandings on the beaches of Sable Island (Lucas and Hooker 2000). Sable Island is approximately 170 km southeast of mainland Nova Scotia. Lucas and Hooker (2000) reported 4 minke whales stranded on Sable Island between 1970 and 1998, 1 in spring 1982, 1 in January 1992, and a mother/calf in December 1998. On the mainland of Nova Scotia, a total of 7 minke whales stranded during 1991 to 1996. The 1996 stranded minke whale was released alive off Cape Breton on the Atlantic Ocean side, the rest were found dead. All the minke whales stranded between July and October. One was from the Atlantic Ocean side of Cape Breton, 1 from Minas Basin, 1 was at an
unknown location, and the rest stranded in the vicinity of Halifax, Nova Scotia. It is unknown how many of the strandings resulted from fishery interactions.

The Whale Release and Strandings program has reported ten minke whale stranding mortalities in Newfoundland and Labrador between 2005 and 2009; 3 in 2005, 1 in 2006, 2 in 2007, 3 in 2008, and 1 in 2009. Four of these records were attributable to human interactions and are included in Table 2 (Ledwell and Huntington 2004; 2006; 2007; 2008; 2009; 2010).

STATUS OF STOCK
The status of minke whales, relative to OSP, in the U.S. Atlantic EEZ is unknown. The minke whale is not listed as endangered under the Endangered Species Act (ESA). The total U.S. fishery-related mortality and serious injury for this stock is less than 10% of the calculated PBR and, therefore, can be considered to be insignificant and approaching zero mortality and serious injury rate. This is not a strategic stock because estimated human-related mortality and serious injury does not exceed PBR and the minke whale is not listed as a threatened or endangered species under the ESA.

REFERENCES CITED

Ledwell, W. and J. Huntington 2009. Incidental entrapments in fishing gear and strandings reported to the whale release and strandings group in Newfoundland and Labrador and a summary of the Whale Release and Strandings Program during 2008. A report to the Department of Fisheries and Oceans Canada, St. John's, Newfoundland, Canada. 29 pp.

Ledwell, W. and J. Huntington 2010. Whale, leatherback sea turtles, and basking sharks entrapped in fishing gear in Newfoundland and Labrador and a summary or the strandings, sightings and education work during 2009-2010. A preliminary report to Fisheries and Oceans Canada, St. John's, Newfoundland, Canada. 23 pp.

RISSO'S DOLPHIN (*Grampus griseus*): Western North Atlantic Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

Risso's dolphins are distributed worldwide in tropical and temperate seas, and in the Northwest Atlantic occur from Florida to eastern Newfoundland (Leatherwood *et al.* 1976; Baird and Stacey 1990). Off the northeastern U.S. coast, Risso's dolphins are distributed along the continental shelf edge from Cape Hatteras northward to Georges Bank during spring, summer, and autumn (CETAP 1982; Payne *et al.* 1984). In winter, the range is in the mid-Atlantic Bight and extends outward into oceanic waters (Payne *et al.* 1984). In general, the population occupies the mid-Atlantic continental shelf edge year round, and is rarely seen in the Gulf of Maine (Payne *et al.* 1984). During 1990, 1991 and 1993, spring/summer surveys conducted along the continental shelf edge and in deeper oceanic waters sighted Risso's dolphins associated with strong bathymetric features, Gulf Stream warm-core rings, and the Gulf Stream north wall (Waring *et al.* 1992; 1993; Hamazaki 2002). There is no information on stock structure of Risso's dolphin in the western North Atlantic, or to determine if separate stocks exist in the Gulf of Mexico and Atlantic. In 2006, a rehabilitated adult male Risso's dolphin stranded and released in the Gulf of Mexico off Florida was tracked via satellite to waters off Delaware (Wells *et al.* 2009). The Gulf of Mexico and Atlantic stocks are currently being treated as two separate stocks.

POPULATION SIZE

Total numbers of Risso's dolphins off the U.S. or Canadian Atlantic coast are unknown, although eight abundance estimates are available from selected regions for select time periods. Sightings were almost exclusively in continental shelf edge and continental slope areas (Figure 1). The best abundance estimate for Risso's dolphins is the sum of the estimates from the two 2004 U.S. Atlantic surveys, 20,479 (CV=0.59), where the estimate from the northern U.S. Atlantic is 15,053 (CV=0.78), and from the southern U.S. Atlantic is 5,426 (CV=0.54). This joint estimate is considered best because these two surveys together have the most complete coverage of the population's habitat.

Earlier abundance estimates

Please see appendix IV for earlier abundance estimates. As recommended in the GAMMS Workshop Report (Wade and Angliss 1997), estimates older than eight years are deemed unreliable, therefore should not be used for PBR determinations. Further, due to changes in survey methodology these data should not be used to make comparisons to more current estimates.
Recent surveys and abundance estimates

An abundance estimate of 15,054 (CV=0.78) Risso’s dolphins was obtained from a line-transect sighting survey conducted during 12 June to 4 August 2004 by a ship and plane that surveyed 10,761 km of track line in waters north of Maryland (38°N) to the Bay of Fundy (45°N) (Table 1; Palka 2006). Shipboard data were collected using the two-independent-team line-transect method and analyzed using the modified direct-duplicate method (Palka 1995) accounting for biases due to school size and other potential covariates, reactive movements (Palka and Hammond 2001), and g(0), the probability of detecting a group on the track line. Aerial data were collected using the Hiby circle-back line-transect method (Hiby 1999) and analyzed accounting for g(0) and biases due to school size and other potential covariates (Palka 2005).

A shipboard survey of the U.S. Atlantic outer continental shelf and continental slope (water depths >50 m) between Florida and Maryland (27.5-38°N latitude) was conducted during June-August 2004. The survey employed two independent visual teams searching with 25x bigeye binoculars. Survey effort was stratified to include increased effort along the continental shelf break and Gulf Stream front in the mid-Atlantic. The survey included 5,659 km of trackline, and recorded a total of 473 cetacean sightings. Sightings were most frequent in waters north of Cape Hatteras, North Carolina along the shelf break. Data were analyzed to correct for visibility bias (g(0)) and group-size bias employing line-transect distance analysis and the direct-duplicate estimator (Palka 1995; Buckland et al. 2001). The resulting abundance estimate for Risso’s dolphins between Florida and Maryland was 5,426 (CV=0.54).

An abundance estimate of 14,408 (CV=0.38) Risso’s dolphins was obtained from an aerial survey conducted in August 2006 which covered 10,676 km of trackline in the region from the 2,000-m depth contour on the southern edge of Georges Bank to the upper Bay of Fundy and to the entrance of the Gulf of St. Lawrence (Table 1; Palka, pers. comm.). The value of g(0) used for this estimation was derived from the pooled 2002, 2004 and 2006 aerial survey data.

<table>
<thead>
<tr>
<th>Month/Year</th>
<th>Area</th>
<th>(N_{\text{best}})</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jun-Aug 2004</td>
<td>Maryland to Bay of Fundy</td>
<td>15,054</td>
<td>0.78</td>
</tr>
<tr>
<td>Jun-Aug 2004</td>
<td>Florida to Maryland</td>
<td>5,426</td>
<td>0.54</td>
</tr>
<tr>
<td>Jun-Aug 2004</td>
<td>Florida to Bay of Fundy (COMBINED)</td>
<td>20,479</td>
<td>0.59</td>
</tr>
<tr>
<td>Aug 2006</td>
<td>S. Gulf of Maine to upper Bay of Fundy to Gulf of St. Lawrence</td>
<td>14,408</td>
<td>0.38</td>
</tr>
</tbody>
</table>

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normally distributed best abundance estimate. This is equivalent to the 20th percentile of the log-normal distribution as specified by Wade and Angliss (1997). The best estimate of abundance for Risso’s dolphins is 20,479 (CV=0.59), obtained from the 2004 surveys. The minimum population estimate for the western North Atlantic Risso’s dolphin is 12,920.

Current Population Trend

There are insufficient data to determine population trends for this species.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04. This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow et al. 1995).
POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum productivity rate, and a “recovery” factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is 12,920. The maximum productivity rate is 0.04, the default value for cetaceans (Barlow et al. 1995). The “recovery” factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP) is assumed to be 0.48 because the CV of the average mortality estimate is between 0.3 and 0.6 (Wade and Angliss 1997). PBR for the western North Atlantic stock of Risso’s dolphin is 124.

ANNUAL HUMAN- CAUSED MORTALITY

Total annual estimated average fishery-related mortality or serious injury to this stock during 2005-2009 was 18 Risso’s dolphins (CV = 0.37; Table 2).

Fishery Information

Detailed fishery information is reported in Appendix III.

Earlier Interactions

Prior to 1977, there was no documentation of marine mammal bycatch in distant-water fleet (DWF) activities off the northeastern coast of the U.S. With implementation of the Fisheries Conservation and Management Act in that year, an observer program was established which recorded fishery data and information on incidental bycatch of marine mammals. NMFS foreign-fishery observers reported four deaths of Risso’s dolphins incidental to squid and mackerel fishing activities in the continental shelf and continental slope waters between March 1977 and December 1991 (Waring et al. 1990; NMFS unpublished data).

In the pelagic drift gillnet fishery, 51 Risso's dolphin mortalities were observed between 1989 and 1998. One animal was entangled and released alive. Bycatch occurred during July, September and October along continental shelf edge canyons off the southern New England coast. Estimated annual mortality and serious injury (CV in parentheses) attributable to the drift gillnet fishery was 87 in 1989 (0.52), 144 in 1990 (0.46), 21 in 1991 (0.55), 31 in 1992 (0.27), 14 in 1993 (0.42), 1.5 in 1994 (0.16), 6 in 1995 (0), 0 in 1996, no fishery in 1997, and 9 in 1998 (0). This fishery was closed effective in 1999.

In the pelagic pair trawl fishery, one mortality was observed in 1992. Estimated annual fishery-related mortality (CV in parentheses) attributable to the pelagic pair trawl fishery was 0.6 dolphins in 1991 (1.0), 4.3 in 1992 (0.76), 3.2 in 1993 (1.0), 0 in 1994 and 3.7 in 1995 (0.45). This fishery ended as of 1996.

Pelagic Longline

Pelagic longline bycatch estimates of Risso’s dolphins in 1998, 1999, and 2000 were obtained from Yeung (1999), Yeung et al. (2000), and Yeung (2001), respectively. Bycatch estimates for 2001 - 2009 were obtained from Garrison (2003), Garrison and Richards (2004), Garrison (2005), Fairfield Walsh and Garrison (2006), Fairfield Walsh and Garrison (2007), Fairfield and Garrison (2008), Garrison et al. (2009) and Garrison and Stokes (2010). Most of the estimated marine mammal bycatch was from U.S. Atlantic EEZ waters between South Carolina and Cape Cod. Excluding the Gulf of Mexico, from 1992 to 2000 one mortality was observed in both 1994 and 2000, and 0 in other years. The observed numbers of seriously-injured but released alive individuals from 1992 to 2009 were, respectively, 2, 0, 6, 4, 1, 0, 1, 1, 6, 4, 2, 2, 0, 0, 1, 3, and 11 (Cramer 1994; Scott and Brown 1997; Johnson et al. 1999; Yeung 1999; Yeung et al. 2000; Yeung 2001; Garrison 2003; Garrison and Richards 2004; Garrison 2005; Fairfield Walsh and Garrison 2006; Fairfield Walsh and Garrison 2007; Fairfield and Garrison 2008 Garrison et al. 2009 and Garrison and Stokes 2010) (Table 2). Estimated annual fishery-related mortality (CV in parentheses) was 17 animals in 1994 (1.0), 41 in 2000 (1.0), 24 in 2001(1.0), 20 in 2002 (0.86), and 0 in 2003 to 2009 (Table 2). Seriously injured and released alive animals were estimated to be 54 dolphins (0.7) in 1992, 0 in 1993, 120 (0.57) in 1994, 103 (0.68) in 1995, 99 (1.0) in 1996, 0 in 1997, 57 (1.0) in 1998, 22 (1.0) in 1999, 23 (1.0) in 2000, 45 (0.7) in 2001, 8 (1.0) in 2002, 40 (0.63) in 2003 28(0.72) in 2004, 3(1.0), 0 in 2005, 0 in 2006, 9 in 2007, 17 in 2008, and 11 in 2009 (Table 2). There is a high likelihood that dolphins released alive with ingested gear or gear wrapped around appendages will not survive (Wells et al. 2008a). The annual average combined mortality and serious injury for 2005-2009 is 8 Risso's dolphins (CV = 0.40; Table 2).

Northeast Sink Gillnet

Estimated annual mortalities (CV in parentheses) from this fishery are: 0 in 1999, 15 (1.06) in 2000, 0 in 2001-2004, 15 in 2005 (0.93), and 0 in 2006 through 2009 (Table 2). The 2005-2009 average mortality in this fishery is 3
Risso’s dolphins (CV =0.93).

Mid-Atlantic Gillnet
A Risso’s dolphin mortality was observed in this fishery for the first time in 2007. The resulting estimated annual mortality for 2007 was 34 (CV=0.73). The 2005-2009 average mortality in this fishery is 7 Risso’s dolphins (CV=0.73).

Mid-Atlantic Mid-water Trawl
A Risso’s dolphin mortality was observed in this fishery for the first time in 2008. No bycatch estimate has been generated.

<table>
<thead>
<tr>
<th>Fishery</th>
<th>Years</th>
<th>Data Typea</th>
<th>b</th>
<th>Observer Coverage</th>
<th>Observed Serious Injury</th>
<th>Observed Mortality</th>
<th>Estimated Serious Injury</th>
<th>Estimated Mortality</th>
<th>Estimated Combined Mortality</th>
<th>Estimated CVs</th>
<th>Estimated Mortality</th>
<th>Mean Annual Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pelagic Longline</td>
<td>05-09</td>
<td>Obs. Data Logbook</td>
<td>0.06, .07, .07, .14</td>
<td>0, 0, 1, 2</td>
<td>0, 0, 0, 0</td>
<td>3, 0, 9, 17</td>
<td>11</td>
<td>0, 0, 0</td>
<td>3, 0, 9, 17, 11</td>
<td>1, 0, .65, .73, .71</td>
<td>8 (0.40)</td>
<td></td>
</tr>
<tr>
<td>Northeast Sink Gillnet</td>
<td>05-09</td>
<td>Obs. Data Trip Logbook, Allocated Dealer Data</td>
<td>0.04, .05, .04</td>
<td>0, 0, 0</td>
<td>0, 0, 0</td>
<td>0</td>
<td>0, 0, 0</td>
<td>0, 0, 0</td>
<td>15, 0, 0, 0</td>
<td>0, 0, 0</td>
<td>0</td>
<td>93</td>
</tr>
<tr>
<td>Mid-Atlantic Gillnet</td>
<td>05-09</td>
<td>Obs. Data Trip Logbook, Allocated Dealer Data</td>
<td>0.03, .04, .03, .03</td>
<td>0, 0, 0</td>
<td>0, 0, 0</td>
<td>0, 0, 1, 0</td>
<td>0</td>
<td>0, 0, 0</td>
<td>0, 0, 0</td>
<td>0, 0, 34</td>
<td>0, 0, 33, 0, 0</td>
<td>0, 0, .73</td>
</tr>
<tr>
<td>Mid-Atlantic Midwater Trawl - Including Pair Trawl</td>
<td>05-09</td>
<td>Obs. Data Weighout Trip Logbook</td>
<td>0.084, .089, .039, .133, .132</td>
<td>0,0,0,0</td>
<td>0,0,0,0,1,0</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>18 (0.37)</td>
</tr>
</tbody>
</table>

a Observer data (Obs. Data) are used to measure bycatch rates and the data are collected within the Northeast Fisheries Observer Program. The Observer Program collects landings data (Weighout), and total landings are used as a measure of total effort for the coastal gillnet fishery. Estimates can include data pooled across years, so years without observed SI or Mortality may still have an estimated value.

Other Mortality
From 2005 to 2009, 66 Risso’s dolphin strandings were recorded along the U.S. Atlantic coast (NMFS unpublished data). Six animals during this time period had indications of human interaction, four of which were fishery interactions. Indications of human interaction are not necessarily the cause of death. In eastern Canada, one Risso’s dolphin stranding was reported on Sable Island, Nova Scotia between 1970 and 1998 (Lucas and Hooker 2000).

A Virginia Coastal Small Cetacean Unusual Mortality Event (UME) occurred along the coast of Virginia from 1 May to 31 July 2004, when 66 small cetaceans, including one Risso’s dolphin, stranded mostly along the outer (eastern) coast of Virginia’s barrier islands.
A Mid-Atlantic Offshore Small Cetacean UME was declared when 33 small cetaceans stranded from Maryland to Georgia between July and September 2004. The species involved are generally found offshore and are not expected to strand along the coast. Three Risso’s dolphins were involved in this UME.

Table 3. Risso’s dolphin (*Grampus griseus*) reported strandings along the U.S. Atlantic coast, 2005-2009.

<table>
<thead>
<tr>
<th>STATE</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>TOTALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Massachusettsa</td>
<td>8</td>
<td>1</td>
<td>3</td>
<td>8</td>
<td>4</td>
<td>24</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>New York</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>New Jersey</td>
<td>5</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Delaware</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Maryland</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Virginiab</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td></td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>North Carolinab</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Georgia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Floridak</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL</td>
<td>27</td>
<td>6</td>
<td>8</td>
<td>11</td>
<td>14</td>
<td>66</td>
</tr>
</tbody>
</table>

a. One of the 2009 animals had propeller wounds.
b. One of the 2005 animals showed signs of fishery interaction. One of the 2009 animals showed signs of human interaction.
c. One animal in 2006 and 2 in 2009 showed signs of fishery interaction.
d. 2008 includes 4 animals mass stranded in Massachusetts, 3 of which were released alive.
e. The 2 animals in 2009 were considered a mass stranding.

Stranding data probably underestimate the extent of fishery-related mortality and serious injury because all of the marine mammals that die or are seriously injured may not wash ashore, nor will all of those that do wash ashore necessarily show signs of entanglement or other fishery-interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interaction.

STATUS OF STOCK

The status of Risso's dolphins relative to OSP in the U.S. Atlantic EEZ is unknown. The species is not listed as threatened or endangered under the Endangered Species Act. There are insufficient data to determine population trends for this species. The total U.S. fishery mortality and serious injury for this stock is not less than 10% of the calculated PBR and, therefore, cannot be considered to be insignificant and approaching a zero mortality and serious injury rate. The 2005-2009 average annual human-related mortality does not exceed PBR; therefore, this is not a strategic stock.

REFERENCES CITED

CETAP 1982. A characterization of marine mammals and turtles in the mid- and North Atlantic areas of the U.S. outer continental shelf, final report, Cetacean and Turtle Assessment Program, University of Rhode Island.
LONG-FINNED PILOT WHALE (*Globicephala melas melas*):
Western North Atlantic Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

There are 2 species of pilot whales in the western Atlantic—the long-finned pilot whale, *Globicephala melas*, and the short-finned pilot whale, *G. macrorhynchus*. These species are difficult to differentiate at sea; therefore, the ability to separately assess the 2 stocks in U.S. Atlantic waters is limited. The long-finned pilot whale is distributed from North Carolina to North Africa (and the Mediterranean) and north to Iceland, Greenland and the Barents Sea (Sergeant 1962; Leatherwood *et al.* 1976; Abend 1993; Buckland *et al.* 1993; Abend and Smith 1999). The stock structure of the North Atlantic population is uncertain (ICES 1993; Fullard *et al.* 2000). Morphometric (Bloch and Lastein 1993) and genetic (Siemann 1994; Fullard *et al.* 2000) studies have provided little support for stock structure across the Atlantic (Fullard *et al.* 2000). However, Fullard *et al.* (2000) have proposed a stock structure that is related to sea-surface temperature: 1) a cold-water population west of the Labrador/North Atlantic current, and 2) a warm-water population that extends across the Atlantic in the Gulf Stream.

In U.S. Atlantic waters, pilot whales (*Globicephala* sp.) are distributed principally along the continental shelf edge off the northeastern U.S. coast in winter and early spring (CETAP 1982; Payne and Heinemann 1993; Abend and Smith 1999; Hamazaki 2002). In late spring, pilot whales move onto Georges Bank and into the Gulf of Maine and more northern waters, and remain in these areas through late autumn (CETAP 1982; Payne and Heinemann 1993). Pilot whales tend to occupy areas of high relief or submerged banks. They are also associated with the Gulf Stream wall and thermal fronts along the continental shelf edge (Waring *et al.* 1992; NMFS unpublished data). Long-finned and short-finned pilot whales overlap spatially along the mid-Atlantic shelf break between Cape Hatteras, North Carolina, and New Jersey (Payne and Heinemann 1993; Garrison *et al.* in prep.).

POPULATION SIZE

The total number of long-finned pilot whales off the eastern U.S. and Canadian Atlantic coast is unknown, although several abundance estimates are available from selected regions for select time periods. Because long-finned and short-finned pilot whales are difficult to distinguish at sea, sighting data are reported as *Globicephala* sp. Sightings from vessel and aerial surveys were strongly concentrated along the continental shelf break; however, pilot whales were also observed over the continental slope in waters associated with the Gulf Stream (Figure 1). Combined abundance estimates for the 2 species have previously been derived from line-transect surveys. The best available abundance estimates are from surveys conducted during the summer of 2004. These survey data have been combined with an analysis of the spatial distribution of the 2 species based on genetic analyses of biopsy samples to derive separate abundance estimates (Garrison *et al.*, in prep.). The resulting abundance estimate for long-finned pilot whales in U.S. waters is

Figure 1. Distribution of long-finned (open symbols), short-finned (black symbols), and possible mixed (gray symbols) pilot whale sightings from NEFSC and SEFSC shipboard and aerial surveys during the summers of 1998, 1999, 2002, 2004, 2006 and 2007. The inferred distribution of the two species is preliminary and is valid for June-August only. Isobaths are at the 100-m, 1,000-m, and 4,000-m depth contours.
12,619 (CV=0.37).

Earlier estimates

Please see appendix IV for earlier estimates and descriptions of abundance surveys. As recommended in the GAMMS Workshop Report (Wade and Angliss 1997), if estimates are older than 8 years PBR is undetermined. Further, due to changes in survey methodology, the earlier data should not be used to make comparisons with more current estimates.

Recent surveys and abundance estimates for *Globicephala* sp.

An abundance estimate of 5,408 (CV=0.56) *Globicephala* sp. was obtained from an aerial survey conducted in July and August 2002 that covered 7,465 km of trackline over waters from the 1000-m depth contour on the southern edge of Georges Bank to Maine (Table 1; Palka 2006). The value of $g(0)$, the probability of detecting a group on the track line, used for this estimation was derived from the pooled data of the 2002, 2004 and 2006 aerial surveys.

An abundance estimate of 15,728 (CV=0.34) *Globicephala* sp. was obtained from a line-transect sighting survey conducted during 12 June to 4 August 2004 by a ship and plane that surveyed 10,761 km of track line in waters north of Maryland (38°N) to the Bay of Fundy (45°N) (Table 1; Palka 2006). Shipboard data were collected using the two-independent-team line-transect method and analyzed using the modified direct-duplicate method (Palka 1995) accounting for biases due to school size and other potential covariates, reactive movements (Palka and Hammond 2001), and $g(0)$. Aerial data were collected using the Hibi circle-back line-transect method (Hibi 1999) and analyzed accounting for $g(0)$ and biases due to school size and other potential covariates (Palka 2005).

A shipboard survey of the U.S. Atlantic outer continental shelf and continental slope (water depths >50 m) between Florida and Maryland (27.5°N and 38°N latitude) was conducted during June-August 2004. The survey employed 2 independent visual teams searching with 25x biegey binoculars. Survey effort was stratified to include increased effort along the continental shelf break and Gulf Stream front in the mid-Atlantic. The survey included 5,659 km of trackline, and collected a total of 473 cetacean sightings. Sightings were most frequent in waters north of Cape Hatteras, North Carolina, along the shelf break. Data were corrected for visibility bias $g(0)$ and group-size bias and analyzed using line-transect distance analysis (Palka 1995; Buckland et al. 2001). The resulting abundance estimate for *Globicephala* sp. between Florida and Maryland was 21,056 animals (CV=0.54; Garrison et al. in press).

An abundance estimate of 26,535 (CV=0.35) *Globicephala* sp. was obtained from an aerial survey conducted in August 2006 which covered 10,676 km of trackline in the region from the 2000-m depth contour on the southern edge of Georges Bank to the upper Bay of Fundy and to the entrance of the Gulf of St. Lawrence (Table 1; Palka pers. comm.).

An abundance estimate of 6,134 (95% CI=2,774-10,573) pilot whales was generated from the Canadian Trans-North Atlantic Sighting Survey (TNASS) in July-August 2007. This aerial survey covered the area from northern Labrador to the Scotian Shelf, providing full coverage of the Atlantic Canadian coast. Estimates from this survey have not yet been corrected for availability and perception biases (Lawson and Gosselin 2009).

<table>
<thead>
<tr>
<th>Month/Year</th>
<th>Area</th>
<th>N_{best}</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug 2002</td>
<td>S. Gulf of Maine to Maine</td>
<td>5,408</td>
<td>0.56</td>
</tr>
<tr>
<td>Jun-Aug 2004</td>
<td>Maryland to the Bay of Fundy</td>
<td>15,728</td>
<td>0.34</td>
</tr>
<tr>
<td>Jun-Aug 2004</td>
<td>Florida to Maryland</td>
<td>21,056</td>
<td>0.54</td>
</tr>
<tr>
<td>Jun-Aug 2004</td>
<td>Florida to Bay of Fundy (COMBINED)</td>
<td>36,784</td>
<td>0.34</td>
</tr>
<tr>
<td>Aug 2006</td>
<td>S. Gulf of Maine to upper Bay of Fundy to Gulf of St. Lawrence</td>
<td>26,535</td>
<td>0.35</td>
</tr>
<tr>
<td>July-Aug 2007</td>
<td>N. Labrador to Scotian Shelf</td>
<td>6,134</td>
<td>0.28</td>
</tr>
</tbody>
</table>
Spatial Distribution and Abundance Estimates for *Globicephala melas*

Biopsy samples from pilot whales were collected during summer months (June-August) from South Carolina to the southern flank of Georges Bank between 1998 and 2007. These samples were identified to species using genetic analysis of mitochondrial DNA sequences. A portion of the mtDNA genome was sequenced from each biopsy sample collected in the field, and genetic species identification was performed through phylogenetic reconstruction of the haplotypes. Stranded specimens that were morphologically identified to species were used to assign clades in the phylogeny to species and thereby identify all samples (Garrison et al., in prep). Based upon the date and location of sample collection, the probability of a sample being from a long-finned (or short-finned) pilot whale was evaluated as a function of sea-surface temperature and water depth using logistic regression. This analysis indicated that the probability of a sample coming from a long-finned pilot whale was near 1 at water temperatures < 22°C, and near 0 at temperatures >25°C. The probability of a long-finned pilot whale also decreased with increasing water depth. Spatially, during summer months, this habitat model predicts that all pilot whales observed in offshore waters near the Gulf Stream are most likely short-finned pilot whales. The area of overlap between the 2 species occurred primarily along the shelf break off the coast of New Jersey between 38°N and 40°N latitude. This habitat model was used to partition the abundance estimates from surveys conducted during the summer of 2004. The survey covering waters from Florida to Maryland was predicted to consist entirely of short-finned pilot whales. The aerial portion of the northeast survey covering the Gulf of Maine and the Bay of Fundy and surveys conducted in Canadian waters were predicted to consist entirely of long-finned pilot whales. The vessel portion of the northeast survey contained a mix of both species, with the sightings in offshore waters near the Gulf Stream predicted to consist of short-finned pilot whales. The best abundance estimate for long-finned pilot whales is thus the sum of the northeast aerial survey estimate (11,038 [CV=0.40], Palka 2006) and the estimated number of long-finned pilot whales from the southeast vessel survey (1,581 [CV=0.86]). The best available abundance estimate is thus 12,619 (CV=0.37) (Palka 2006; Garrison et al., in prep; Garrison et al., in press).

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normally distributed best abundance estimate. This is equivalent to the 20th percentile of the log-normal distribution as specified by Wade and Angliss (1997). The best estimate of abundance for western North Atlantic long-finned pilot whales is 12,619 animals (CV=0.37). This reflects only the portion of the long-finned pilot whale population occupying U.S. waters. This is consistent with guidelines for assessment of trans-boundary stocks since the available mortality estimates are also restricted to U.S. waters. The minimum population estimate for long-finned pilot whales is 9,333.

Current Population Trend

There are insufficient data to determine population trends for *Globicephala melas melas*.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. Life history parameters that could be used to estimate net productivity obtained from animals taken in the Newfoundland drive fishery include: calving interval 3.3 years; lactation period about 21-22 months; gestation period 12 months; births mainly from June to November; length at birth of 177 cm; mean length at sexual maturity of 490 cm for males and 356 cm for females; age at sexual maturity of 12 years for males and 6 years for females; mean adult length of 557 cm for males and 448 cm for females; and maximum age of 40 for males and 50 for females (Sergeant 1962; Kasuya et al. 1988). Analysis of data from animals taken in the Faroe Islands drive fishery produced higher values for all parameters (Bloch et al. 1993; Desportes et al. 1993; Martin and Rothery 1993). These differences are likely related, at least in part, to larger sample sizes and different analytical techniques.

For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04. This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum productivity rate, and a “recovery” factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size for long-finned pilot whales is 9,333. The maximum productivity rate is 0.04, the default value for cetaceans. The “recovery” factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP) is assumed to be 0.5 because the CV of the average
mortality estimate is less than 0.3 (Wade and Angliss 1997). PBR for the western North Atlantic long-finned pilot whale is 93.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

The total annual human caused mortality of long-finned pilot whales cannot be determined. The highest bycatch rates in the pelagic longline fishery area were observed during September – October along the mid-Atlantic coast (Garrison 2007). In bottom trawls, most mortalities were observed in the same area between July and November (Rossman 2009). The model used to derive abundance estimates uses data restricted to the warmest months of the year (June-August), and there are currently very few data available for the potential area of overlap during the fall. Therefore, it is not possible to partition mortality estimates between the 2 species because there are very few available genetic samples from the area of overlap and season where most mortality occurs. Mortality and serious injury estimates are thus presented only for the 2 species combined. Total annual estimated average fishery-related mortality or serious injury during 2005-2009 was 162 pilot whales (CV=0.15; Table 2). Of this, it is most likely that the mortality due to the pelagic longline fishery, the Northeast midwater trawl fishery, and the Northeast groundfish fishery have the most direct impact on long-finned pilot whales.

Fishery Information

Detailed fishery information is reported in Appendix III. Total fishery-related mortality and serious injury cannot be estimated separately for the 2 species of pilot whales in the U.S. Atlantic EEZ because of the uncertainty in species identification by fishery observers. The Atlantic Scientific Review Group advised adopting the risk-averse strategy of assuming that either species might have been subject to the observed fishery-related mortality and serious injury.

Earlier Interactions

Prior to 1977, there was no documentation of marine mammal bycatch in distant-water fleet (DWF) activities off the northeastern coast of the U.S. A fishery observer program, which has collected fishery data and information on incidental bycatch of marine mammals, was established in 1977 with the implementation of the Fisheries Conservation and Management Act (FCMA).

During 1977-1991, observers in this program recorded 436 pilot whale mortalities in foreign-fishing activities (Waring et al. 1990; Waring 1995). A total of 391 pilot whales (90%) was taken in the mackerel fishery, and 41 (9%) occurred during Loligo and Illex squid-fishing operations. This total includes 48 documented takes by U.S. vessels involved in joint-venture fishing operations. Two animals were also caught in both the hake and tuna longline fisheries (Waring et al. 1990).

Between 1989 and 1998, 87 mortalities were observed in the large pelagic drift gillnet fishery. The annual fishery-related mortality (CV in parentheses) was 77 in 1989 (0.24), 132 in 1990 (0.24), 30 in 1991 (0.26), 33 in 1992 (0.16), 31 in 1993 (0.19), 20 in 1994 (0.06), 9.1 in 1995 (0), 11 in 1996 (0.17), no fishery in 1997 and 12 in 1998 (0). This fishery was permanently closed in 1999.

Five pilot whale (Globicephala sp.) mortalities were reported in the self-reported fisheries information for the Atlantic tuna pair trawl in 1993. In 1994 and 1995 observers reported 1 and 12 mortalities, respectively. The estimated fishery-related mortality to pilot whales in the U.S. Atlantic attributable to this fishery in 1994 was 2.0 (CV=0.49) and 22 (CV=0.33) in 1995.

Two interactions with pilot whales in the Atlantic tuna purse seine fishery were observed in 1996. In 1 interaction, the net was pursed around 1 pilot whale, the rings were released and the animal escaped alive, condition unknown. This set occurred east of the Great South Channel and just north of the Cultivator Shoals region on Georges Bank. In a second interaction, 5 pilot whales were encircled in a set. The net was opened prior to pursing to let the whales swim free, apparently uninjured. This set occurred on the Cultivator Shoals region on Georges Bank. No trips were observed during 1997 through 1999. Four trips were observed in September 2001, with no marine mammals observed taken during these trips.

No pilot whales were taken in observed mid-Atlantic coastal gillnet trips during 1993-1997. One pilot whale was observed taken in 1998, and none were observed taken during 1999-2003. Observed effort was scattered between New York and North Carolina from 1 to 50 miles off the beach. All bycatches were documented during January to April. Using the observed takes, the estimated annual mortality attributed to this fishery was 7 (CV=1.10) in 1998.

One pilot whale take was observed in the Illex squid portion of the southern New England/mid-Atlantic squid, mackerel, butterfish trawl fisheries in 1996 and 1 in 1998. The estimated fishery-related mortality to pilot whales in the U.S. Atlantic attributable to this fishery was 45 in 1996 (CV=1.27), 0 in 1997, 85 in 1998 (CV=0.65) and 0 in
1999. However, these estimates should be viewed with caution due to the extremely low (<1%) observer coverage. After 1999 this fishery is included as a component of the mid-Atlantic bottom trawl fishery.

One pilot whale take was observed in the *Loligo* squid portion of the southern New England/mid-Atlantic squid, mackerel, butterfish trawl fisheries in 1999. The estimated fishery-related mortality to pilot whales in the U.S. Atlantic attributable to this fishery was 0 between 1996 and 1998, and 49 in 1999 (CV=0.97). However, these estimates should be viewed with caution due to the extremely low (<1%) observer coverage. After 1999 this fishery has been included as a component of the mid-Atlantic bottom trawl fishery.

There was 1 observed take in the southern New England/mid-Atlantic bottom trawl fishery reported in 1999. The estimated fishery-related mortality for pilot whales attributable to this fishery was 0 in 1996-1998, and 228 (CV=1.03) in 1999. After 1999 this fishery has been included as a component of the mid-Atlantic bottom trawl fishery.

A U.S. joint venture (JV) mid-water (pelagic) trawl fishery was conducted on Georges Bank from August to December 2001. Eight pilot whales were incidentally captured in a single mid-water trawl during JV fishing operations. Three pilot whales were incidentally captured in a single mid-water trawl during foreign fishing operations (TALFF).

For more details on earlier fishery interactions see Waring et al. (2007).

Pelagic Longline

Most of the estimated marine mammal bycatch in the U.S. pelagic longline fishery was recorded in U.S. Atlantic EEZ waters between South Carolina and Cape Cod (Johnson et al. 1999; Garrison and Richards 2004; Garrison 2005; Fairfield Walsh and Garrison 2006; Fairfield Walsh and Garrison 2007; Fairfield and Garrison 2008). Pilot whales are frequently observed to feed on hooked fish, particularly big-eye tuna (NMFS unpublished data). Between 1992 and 2008, 154 pilot whales were released alive, including 83 that were considered seriously injured, and 5 mortalities were observed (Johnson et al. 1999; Yeung 2001; Garrison 2003; Garrison and Richards 2004; Garrison 2005; Fairfield Walsh and Garrison 2006; Fairfield Walsh and Garrison 2007; Fairfield and Garrison 2008; Garrison et al. 2009; Garrison and Stokes 2010). January-March bycatch was concentrated on the continental shelf edge northeast of Cape Hatteras. Bycatch was recorded in this area during April-June, and takes also occurred north of Hydrographer Canyon off the continental shelf in water over 1,000 fathoms (1830 m) deep during April-June. During the July-September period, takes occurred on the continental shelf edge east of Cape Charles, Virginia, and on Block Canyon slope in over 1,000 fathoms of water. October-December bycatch occurred between the 20- and 50-fathom (37- and 92-m) isobaths between Barnegat Bay and Cape Hatteras.

The estimated fishery-related mortality to pilot whales in the U.S. Atlantic (excluding the Gulf of Mexico) attributable to this fishery was: 127 in 1992 (CV=1.00), 0 from 1993-1998, 93 in 1999 (CV=1.00), 24 in 2000 (CV=1.00), 20 (CV=1.00) in 2001, 2 (CV=1.00) in 2002, 0 in 2003-2005, 16 (CV=1.00) in 2006 and 0 in 2007. The estimated serious injuries were 40 (CV=0.71) in 1992, 19 (CV=1.00) in 1993, 232 (CV=0.53) in 1994, 345 (CV=0.51) in 1995 including 37 estimated short-finned pilot whales (CV=1.00), 0 from 1996 to 1998, 288 (CV=0.74) in 1999, 109 (CV=1.00) in 2000, 50 in 2001 (CV=0.58), 51 in 2002 (CV=0.48), 21 in 2003 (CV=0.78), 74 in 2004 (CV=0.42), 212 (CV=0.21) in 2005, 169 (CV=0.47) in 2006, 57 (CV=0.47) in 2007, 98 (CV=0.42) in 2008 and 17 (CV=0.70) in 2009. The average ‘combined’ annual mortality in 2005-2009 was 114 pilot whales (CV=0.20) (Table 2).

An experimental fishery was conducted on 6 vessels operating in the Gulf of Mexico and off the U.S. East Coast in 2005, with 100% observer coverage achieved. During this experiment, different hook-baiting techniques with standardized gangion and float line lengths were used, and hook timers and time-depth recorders were attached to the gear. The fishing techniques and gear employed during this experimental fishery do not represent those used during “normal” fishing efforts, and are thus presented separately in Table 2. Three pilot whales were released alive during this experimental fishery, including 1 that was seriously injured (Fairfield Walsh and Garrison 2006).

Mid-Atlantic Bottom Trawl

Two pilot whales were observed taken in the mid-Atlantic bottom trawl in 2000, 4 in 2005, 1 in 2006, 0 in 2007, 0 in 2008, and 0 in 2009. The estimated fishery-related mortality to pilot whales in the U.S. Atlantic attributable to this fishery was: 47 (CV=0.32) in 2000, 39 (CV=0.31) in 2001, 38 (CV=0.36) in 2002, 31 (CV=0.31) in 2003, 35 (CV=0.33) in 2004, 31 (CV=0.31) in 2005, 37 (CV=0.34) in 2006, 36 (CV=0.38) in 2007, 24 (CV=0.36) in 2008 and 23 (CV=0.35) in 2009. The 2005-2009 average mortality attributed to the mid-Atlantic bottom trawl was 30 animals (CV=0.16) (Table 2).
Northeast Bottom Trawl

Two pilot whales were observed taken in the Northeast bottom trawl in 2004, 4 in 2005, 1 in 2006, 4 in 2007, 5 in 2008, and 3 in 2009. The estimated fishery-related mortality to pilot whales in the U.S. Atlantic attributable to this fishery was: 18 (CV=0.29) in 2000, 30 (CV=0.27) in 2001, 22 (CV=0.26) in 2002, 20 (CV=0.26) in 2003, 15 (CV=0.29) in 2004, 15 (CV=0.30) in 2005, 14 (CV=0.28) in 2006, 12 (CV=0.35) in 2007, 10 (CV=0.34) in 2008, and 9 (CV=0.35) in 2009. The 2005-2009 average mortality attributed to the northeast bottom trawl was 12 animals (CV=0.14) (Table 2).

Northeast Mid-Water Trawl (Including Pair Trawl)

In Sept 2004 a pilot whale was observed taken in the paired mid-water trawl fishery on the northern edge of Georges Bank (off Massachusetts) in a haul that was targeting (and primarily caught) herring. In April 2008, six pilot whale takes were observed in the single mid-water trawl fishery in hauls targeting mackerel and located on the southern edge of Georges Bank. Due to small sample sizes, the ratio method was used to estimate the bycatch rate (observed takes per observed hours the gear was in the water) for each year, where the paired and single Northeast mid-water trawls were pooled and only hauls that targeted herring or mackerel were used. The VTR herring and mackerel data were used to estimate the total effort (Palka, pers. comm.). Estimated annual fishery-related mortalities were: unknown in 2001-2002, 0 in 2003, 5.6 (CV=0.92) in 2004, 0 in 2005 to 2007, 16 (CV=0.61) in 2008 and 0 in 2009 (Table 2; Palka pers. comm.). The average annual estimated mortality during 2005-2009 was 3 (CV=0.61).

Mid-Atlantic Mid-Water Trawl Fishery (Including Pair Trawl)

In March 2007 a pilot whale was observed bycaught in the single mid-water fishery in a haul targeting herring that was south of Rhode Island. Due to small sample sizes, the ratio method was used to estimate the bycatch rate (observed pilot whale takes per observed hours the gear was in the water) for each year, where the paired and single Mid-Atlantic mid-water trawls were pooled and only hauls that targeted herring or mackerel were used. The VTR herring and mackerel data were used to estimate the total effort (Palka, pers. comm.). Estimated annual fishery-related mortalities were unknown in 2002, 0 in 2003 to 2006, 12.1 (CV=0.99) in 2007, 0 in 2008 and 0 in 2009 (Table 2; Palka pers. comm.). The average annual estimated mortality during 2005-2009 was 2.4 (CV=0.99).

CANADA

Unknown numbers of long-finned pilot whales have also been taken in Newfoundland, Labrador, and Bay of Fundy groundfish gillnets; Atlantic Canada and Greenland salmon gillnets; and Atlantic Canada cod traps (Read 1994).

Between January 1993 and December 1994, 36 Spanish deep-water trawlers, covering 74 fishing trips (4,726 fishing days and 14,211 sets), were observed in NAFO Fishing Area 3 (off the Grand Banks) (Lens 1997). A total of 47 incidental catches was recorded, which included 1 long-finned pilot whale. The incidental mortality rate for pilot whales was 0.007/set.

In Canada, the fisheries observer program places observers on all foreign fishing vessels, on between 25% and 40% of large Canadian vessels (greater than 100 ft), and on approximately 5% of small vessels (Hooker et al. 1997). Fishery observer effort off the coast of Nova Scotia during 1991-1996 varied on a seasonal and annual basis, reflecting changes in fishing effort (see Figure 3, Hooker et al. 1997). During the 1991-1996 period, long-finned pilot whales were bycaught (number of animals in parentheses) in bottom trawl (65); midwater trawl (6); and longline (1) gear. Recorded bycatches by year were: 16 in 1991, 21 in 1992, 14 in 1993, 3 in 1994, 9 in 1995 and 6 in 1996. Pilot whale bycatches occurred in all months except January-March and September (Hooker et al. 1997).

There was 1 record of incidental catch in the offshore Greenland halibut fishery that involved 1 long-finned pilot whale in 2001; no expanded bycatch estimate was calculated (Benjamin et al. 2007).
<table>
<thead>
<tr>
<th>Fishery</th>
<th>Year(s)</th>
<th>Data Type</th>
<th>Observer Coverage</th>
<th>Observed Serious Injury</th>
<th>Estimated Total Mortality</th>
<th>Estimated Combined Mortality</th>
<th>Estimated CVs</th>
<th>Mean Annual Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mid-Atlantic Bottom Trawl*</td>
<td>05-09</td>
<td>Obs. Data Dealer</td>
<td>.03, .02, .03, .05</td>
<td>0, 0, 0, 0, 0, 0</td>
<td>31, 37, 36, 24, 23</td>
<td></td>
<td></td>
<td>30 (.16)</td>
</tr>
<tr>
<td>Northeast Bottom Trawl*</td>
<td>05-09</td>
<td>Obs. Data Dealer</td>
<td>Data VTR Data</td>
<td>.12, .06, .08, .05</td>
<td>15, 14, 12, 10, 9</td>
<td></td>
<td></td>
<td>30 (.14)</td>
</tr>
<tr>
<td>Mid-Atlantic Mid-Water Trawl - Including Pair Trawl*</td>
<td>05-09</td>
<td>Obs. Data Dealer</td>
<td>Data VTR Data</td>
<td>.08, .09, .04, .13</td>
<td>0, 0, 0, 0, 0, 0, 0</td>
<td></td>
<td></td>
<td>2.4 (.99)</td>
</tr>
<tr>
<td>Northeast Mid-Water Trawl - Including Pair Trawl*</td>
<td>05-09</td>
<td>Obs. Data Dealer</td>
<td>Data VTR Data</td>
<td>.20, .03, .08, .20, .42</td>
<td>0, 0, 0, 0, 0, 0, 0</td>
<td></td>
<td></td>
<td>3 (.61)</td>
</tr>
<tr>
<td>Pelagic Longline</td>
<td>05-09</td>
<td>Obs. Data Logbook</td>
<td>.06, .07, .07, .10</td>
<td>9, 12, 5, 5, 2, 0</td>
<td>212, 169, 57, 98, 17</td>
<td></td>
<td></td>
<td>114 (.20)</td>
</tr>
<tr>
<td>2005 Pelagic Longline experimenta 1 fishery</td>
<td>05</td>
<td>Obs. Data</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>1 (0)</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>162 (.15)</td>
</tr>
</tbody>
</table>

* Observer data (Obs. Data) are used to measure bycatch rates, and the data are collected within the Northeast Fisheries Observer Program. Mandatory logbook data were used to measure total effort for the longline fishery. These data are collected at the Southeast Fisheries Science Center (SEFSC).

b Observer coverage of the mid-Atlantic coastal gillnet fishery is a ratio based on tons of fish landed. Observer coverage for the longline fishery is a ratio based on sets. The trawl fisheries are ratios based on trips.

c NE and MA bottom trawl mortality estimates reported for 2007 to 2009 are a product of GLM estimated bycatch rates (utilizing observer data collected from 2000 to 2005) and 2007 to 2009 effort. Complete documentation of methods used to estimate cetacean bycatch mortality are described in Rosman (2010).

d Within each of the fisheries (Northeast and Mid-Atlantic), the paired and single trawl data were pooled. Ratio estimation methods were used within each fishery and year to estimate the total the annual bycatch.

e A cooperative research program conducted during quarters 2 and 3 in 2005 (Fairfield Walsh and Garrison 2006).

Other Mortality
Pilot whales have a propensity to mass strand throughout their range, but the role of human activity in these events is unknown. Between 2 and 168 pilot whales have stranded annually, either individually or in groups, along
the eastern U.S. seaboard since 1980 (NMFS 1993, stranding databases maintained by NMFS NER, NEFSC and SEFSC). From 2004 to 2008, 44 short-finned pilot whales (Globicephala macrorhynchus), 68 long-finned pilot whales (Globicephala melas melas), and 11 pilot whales not specified to the species level (Globicephala sp.) were reported stranded between Maine and Florida, including Puerto Rico and the Exclusive Economic Zone (EEZ) (Table 3). This includes 1 mass stranding of 18 long-finned pilot whales (including 1 pregnant female) as part of a multi-species mass stranding in Barnstable County, Massachusetts, on 10 December 2005 (Fehring and Wells 1976; Irvine et al. 1979; Odell et al. 1980).

A Virginia Coastal Small Cetacean Unusual Mortality Event (UME) occurred along the coast of Virginia from 1 May to 31 July 2004, when 66 small cetaceans stranded mostly along the outer (eastern) coast of Virginia’s barrier islands, including 1 pilot whale (Globicephala sp.). Human interactions were implicated in 17 of the strandings (1 common and 16 bottlenose dolphins), other potential causes were implicated in 14 strandings (1 Atlantic white-sided dolphin, 2 harbor porpoises and 11 bottlenose dolphins), and no cause could be determined for the remaining strandings, including the pilot whale.

An Offshore Small Cetacean UME, was declared when 33 small cetaceans stranded from Maryland to Georgia between July and September 2004. The species involved are generally found offshore and are not expected to strand along the coast. One short-finned pilot whale was involved in this UME.

A UME mass stranding of 33 short-finned pilot whales, including 5 pregnant females, near Cape Hatteras, North Carolina, occurred from 15-16 January 2005. Gross necropsies were conducted and samples were collected for pathological analyses (Hohn et al. 2006), but no single cause for the UME was determined.

Short-finned pilot whales strandings have been reported stranded as far north as Nova Scotia (1990) and Block Island, Rhode Island (2001), though the majority of the strandings occurred from North Carolina southward (Table 3). Long-finned pilot whales have been reported stranded as far south as Florida, where 2 long-finned pilot whales were reported stranded in Florida in November 1998, though their flukes had been apparently cut off, so it is unclear where these animals actually may have died. One additional long-finned pilot whale stranded in South Carolina in 2003, though the confidence in the species identification was only moderate. This animal has subsequently been sequenced and mitochondrial DNA analysis supports the long-finned pilot whale identification. Most of the remaining long-finned pilot whale strandings were from North Carolina northward (Table 3).

During 2005-2009, several human and/or fishery interactions were documented in stranded pilot whales. During a UME in Dare, North Carolina, in January 2005, 6 of the 33 short-finned pilot whales which mass stranded had fishery interaction marks (specifics not given) that were healed and determined not to be the cause of death. A short-finned pilot whale stranded in May 2005 in North Carolina had net marks around the leading edge of the dorsal fin from the top to bottom, and had net marks on both fluke lobes. Two long-finned pilot whales stranded in Virginia in April 2005, 1 with a line on its flukes and another with human interactions noted but specifics not given. Of the 2006 stranding mortalities, 2 were reported as exhibiting signs of human interaction, 1 in Massachusetts and 1 in Virginia. In 2008, 1 Massachusetts stranding mortality was deemed a fishery interaction due to line markings and cut flukes. The 2 New York strandings of long-finned pilot whales were classified as human interactions. One long-finned pilot whale that stranded in Massachusetts in 2009 was classified as a human interaction because it had a piece of monofilament line in its stomach.

<p>| Table 3. Pilot whale (Globicephala macrorhynchus [SF], Globicephala melas melas [LF] and Globicephala sp. [Sp]) strandings along the Atlantic coast, 2005-2009. Strandings that were not reported to species have been reported as Globicephala sp. The level of technical expertise among stranding network personnel varies, and given the potential difficulty in correctly identifying stranded pilot whales to species, reports to specific species should be viewed with caution. |
|---|---|---|---|---|---|---|---|---|
| STATE | 2005 | 2006 | 2007 | 2008 | 2009 | TOTALS |
| | SF | LF | Sp |
| Nova Scotia | 0 | 0 | 2 | 0 | 0 | 3 | 0 | 0 | 2 | 0 | 0 | 15 | 0 | 0 | 22 |
| Newfoundland and Labrador | 0 | 2 | 0 | 0 | 0 | 3 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 0 | 1 | 0 | 2 | 7 |
| Maine | 0 | 2 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 3 | 0 | 0 | 8 | 1 |
| New Hampshire | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| Massachusetts | 0 | 2 | 2 | 0 | 0 | 2 | 0 | 0 | 6 | 0 | 0 | 1 | 1 | 0 | 4 | 0 | 0 | 35 | 1 |
| Rhode Island | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 2 | 0 | 0 | 4 | 0 |</p>
<table>
<thead>
<tr>
<th></th>
<th>0 1 0</th>
<th>0 1 0</th>
<th>0 2 0</th>
<th>0 2 0</th>
<th>0 1 0</th>
<th>0 6 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>New York</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>New Jersey</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Delaware</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Maryland</td>
<td>0 4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Virginia</td>
<td>0 4</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>North Carolina</td>
<td>35 1 2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0 0</td>
<td>1 1 0</td>
</tr>
<tr>
<td>South Carolina</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Florida</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>EEZ</td>
<td>0 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTALS - U.S.,</td>
<td>35 35</td>
<td>4</td>
<td>1 6</td>
<td>1</td>
<td>0 10</td>
<td>3 7</td>
</tr>
</tbody>
</table>

* Data supplied by Tonya Wimmer, Nova Scotia Marine Animal Response Society (pers. comm.).

* Includes 18 pilot whales which were part of a multi-species mass standing in Brewster on 10 December 2005. One of the standing in 2007 classified as human interaction due to attempts to herd the animal to deeper water. One of the 2009 animals was classified as a fishery interaction.

* One pilot whale stranded in Virginia in 2004 during an Unusual Mortality Event but was not identified to species (decomposed and decapitated). Sign of human interaction (a line on the flukes) observed on 2 animals in 2005, and 1 animal was a pregnant female.

* In 2004, 1 short-finned pilot whale (September) and 1 pilot whale (November) not identified to species stranded in North Carolina during an Unusual Mortality Event (UME). A long-finned pilot whale also stranded in February, not related to any UME. 2005 includes Unusual Mortality Event mass standing of 33 short-finned pilot whales on 15-16 January, 2005, including 5 pregnant females. Six animals had fishery interaction marks, which were healed and not the cause of death. Signs of fishery interaction observed on a short-finned pilot whale stranded in May 2005.

In eastern Canada, 37 strandings of long-finned pilot whales (173 individuals) were reported on Sable Island, Nova Scotia, from 1970 to 1998 (Lucas and Hooker 2000). This included 130 animals that mass stranded in December 1976, and 2 smaller groups (<10 each) in autumn 1979 and summer 1992. Fourteen strandings were also recorded along Nova Scotia in 1991-1996 (Hooker et al. 1997). Several live mass-strandings occurred in Nova Scotia recently, including 14 in 2000, 3 in 2001 in Judique, Inverness County, and 4 pilot whales live mass stranded at Point Tupper, Inverness County, in 2002, though no specification to species was made.

Mass strandings of long-finned pilot whales were more frequent several decades ago in Newfoundland when this species was more abundant (Table 4). Recent Newfoundland and Labrador strandings are reported in Table 3.

<table>
<thead>
<tr>
<th>Year</th>
<th>Date</th>
<th>Number of Pilot Whales Stranded</th>
<th>Place in Newfoundland</th>
</tr>
</thead>
<tbody>
<tr>
<td>1979</td>
<td>July 14</td>
<td>135</td>
<td>Pt. au Gaul</td>
</tr>
<tr>
<td>1980</td>
<td>October 19</td>
<td>70</td>
<td>Pt. Leamington</td>
</tr>
<tr>
<td></td>
<td>October 25</td>
<td>18</td>
<td>Grand Beach</td>
</tr>
<tr>
<td>1982</td>
<td>July 27</td>
<td>23</td>
<td>Grand Bank</td>
</tr>
<tr>
<td></td>
<td>August 18</td>
<td>3</td>
<td>Bonavista</td>
</tr>
<tr>
<td>1983</td>
<td>early January</td>
<td>10</td>
<td>Piccadilly</td>
</tr>
<tr>
<td>1984</td>
<td>July 15</td>
<td>5</td>
<td>Middle Cove</td>
</tr>
<tr>
<td>1990</td>
<td>December 14</td>
<td>4</td>
<td>St. Anthony</td>
</tr>
</tbody>
</table>

Stranding data probably underestimate the extent of fishery-related mortality and serious injury because all of the marine mammals that die or are seriously injured may not wash ashore, nor will all of those that do wash ashore necessarily show signs of entanglement or other fishery interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interaction.
A potential human-caused source of mortality is from polychlorinated biphenyls (PCBs) and chlorinated pesticides (DDT, DDE, dieldrin, etc.), moderate levels of which have been found in pilot whale blubber (Taruski et al. 1975; Muir et al. 1988; Weisbrod et al. 2000). Weisbrod et al. (2000) reported that bioaccumulation levels were more similar in whales from the same stranding group than animals of the same sex or age. Also, high levels of toxic metals (mercury, lead, cadmium) and selenium were measured in pilot whales harvested in the Faroe Island drive fishery (Nielsen et al. 2000). Similarly, Dam and Bloch (2000) found very high PCB levels in pilot whales in the Faroes. The population effect of the observed levels of such contaminants is unknown.

STATUS OF STOCK

The status of long-finned pilot whales relative to OSP in U.S. Atlantic EEZ is unknown. There are insufficient data to determine population trends for this species. The species is not listed under the Endangered Species Act. The total U.S. fishery-related mortality and serious injury for long-finned pilot whales is unknown, since it is not possible to partition mortality estimates between the long-finned and short-finned pilot whales. However, it is most likely not less than 10% of the calculated PBR and therefore cannot be considered to be insignificant and approaching zero mortality and serious injury rate. The total fishery mortality may exceed PBR; however, it is unknown to what extent the pelagic longline fishery in particular impacts this stock. Due to the possibility of exceeding PBR, this should be considered a strategic stock. However, the inability to partition mortality estimates between the species limits the ability to adequately assess the status of this stock.

REFERENCES CITED

Ledwell, W. and J. Huntington 2010. Incidental entrapments in fishing gear and strandings reported to the whale release and strandings group in Newfoundland and Labrador and a summary of the Whale Release and Strandings Group in Newfoundland and Labrador and a summary of the whale release and strandings program during 2009-2010. A report to the Department of Fisheries and Oceans Canada, St. John's, Newfoundland, Canada. 23 pp.

SHORT-FINNED PILOT WHALE (*Globicephala macrorhynchus*): Western North Atlantic Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

There are 2 species of pilot whales in the western North Atlantic - the long-finned pilot whale, *Globicephala melas*, and the short-finned pilot whale, *G. macrorhynchus*. These species are difficult to differentiate at sea; therefore, the ability to separately assess the 2 stocks in U.S. Atlantic waters is limited. Sightings of pilot whales (*Globicephala sp.*) in the western North Atlantic occur primarily near the continental shelf break ranging from Florida to the Nova Scotian Shelf (Mullin and Fulling 2003). Long-finned and short-finned pilot whales overlap spatially along the mid-Atlantic shelf break between Cape Hatteras, North Carolina, and New Jersey (Payne and Heinemann 1993; Garrison *et al.*, in prep.). In addition, short-finned pilot whales are documented along the continental shelf and continental slope in the northern Gulf of Mexico (Hansen *et al.* 1996; Mullin and Hoggard 2000; Mullin and Fulling 2003), and they are also known from the wider Caribbean. Studies are currently being conducted at the Southeast Fisheries Science Center to evaluate genetic population structure in short-finned pilot whales. Pending these results, the *Globicephala macrorhynchus* population occupying U.S. Atlantic waters is considered separate from both the northern Gulf of Mexico stock and short-finned pilot whales occupying Caribbean waters.

POPULATION SIZE

The total number of short-finned pilot whales off the eastern U.S. Atlantic coast is unknown, although several abundance estimates are available from selected regions for select time periods. Because long-finned and short-finned pilot whales are difficult to distinguish at sea, sightings data are reported as *Globicephala sp.* Sightings from vessel and aerial surveys were strongly concentrated along the continental shelf break; however, pilot whales were also observed over the continental slope in waters associated with the Gulf Stream (Figure 1). Combined abundance estimates for the 2 species have previously been derived from line transect surveys. The best available abundance estimates are from surveys conducted during the summer of 2004 because these are the most recent surveys covering the full range of pilot whales in U.S. Atlantic waters. These survey data have been combined with an analysis of the spatial distribution of the 2 species based on genetic analyses of biopsy samples to derive separate abundance estimates (Garrison *et al.*, in prep.). The resulting abundance estimate for short-finned pilot whales is 24,674 (CV=0.45).

Figure 1. Distribution of long-finned (open symbols), short-finned (black symbols), and possibly mixed (gray symbols) pilot whale sightings from NEFSC and SEFSC shipboard and aerial surveys during the summers of 1998, 1999, 2002, 2004, 2006 and 2007. The inferred distribution of the two species is preliminary and is valid for June-August only. Isobaths are at the 100-m, 1,000-m, and 4,000-m depth contours.

Earlier Estimates

Please see appendix IV for earlier estimates and descriptions of abundance surveys. As recommended in the GAMMMS Workshop Report (Wade and Angliss 1997), if estimates are older than 8 years PBR is undetermined. Further, due to changes in survey methodology, the earlier data should not be used to make comparisons with more
Recent surveys and abundance estimates for *Globicephala* sp.

An abundance estimate of 5,408 (CV=0.56) *Globicephala* sp. was obtained from an aerial survey conducted in July and August 2002 covering 7,465 km of trackline in U.S. waters from the 1,000-m depth contour on the southern edge of Georges Bank north to the Gulf of Maine (Table 1; Palka 2006). The value of $g(0)$, the probability of detecting a group on the track line, used for this estimation was derived from the pooled data of the 2002, 2004 and 2006 aerial surveys.

An abundance estimate of 15,728 (CV=0.34) *Globicephala* sp. was obtained from a line-transect sighting survey conducted during 12 June to 4 August 2004 by a ship and plane that surveyed 10,761 km of track line in waters north of Maryland (38°N) to the Bay of Fundy (45°N) (Table 1; Palka 2006). Shipboard data were collected using the 2-independent-team line-transect method and analyzed using the modified direct-duplicate method (Palka 1995) accounting for biases due to school size and other potential covariates, reactive movements (Palka and Hammond 2001), and $g(0)$. Aerial data were collected using the Hibi circle-back line-transect method (Hibi 1999) and analyzed accounting for $g(0)$ and biases due to school size and other potential covariates (Palka 2005).

A shipboard survey of the U.S. Atlantic outer continental shelf and continental slope (water depths >50 m) between Florida and Maryland (27.5°N and 38°N latitude) was conducted during June-August 2004. The survey employed 2 independent visual teams searching with 25x bigeye binoculars. Survey effort was stratified to include increased effort along the continental shelf break and Gulf Stream front in the mid-Atlantic. The survey included 5,659 km of trackline, and collected a total of 473 cetacean sightings. Sightings were most frequent in waters north of Cape Hatteras, North Carolina, along the shelf break. Data were corrected for visibility bias $g(0)$ and group-size bias and analyzed using line-transect distance analysis (Palka 1995; Buckland et al. 2001). The resulting abundance estimate for *Globicephala* sp. between Florida and Maryland was 21,056 animals (CV=0.54; Garrison et al., in press).

An abundance estimate of 26,535 (CV=0.35) *Globicephala* sp. was obtained from an aerial survey conducted in August 2006 that covered 10,676 km of trackline in the region from the 2,000-m depth contour on the southern edge of Georges Bank north to the upper Bay of Fundy and to the entrance of the Gulf of St. Lawrence (Table 1; Palka pers. comm.).

An abundance estimate of 6,134 (95% CI=2,774-10,573) pilot whales was generated from the Canadian Trans North Atlantic Sightting Survey (TNASS) in July-August 2007. This aerial survey covered the area from northern Labrador to the Scotian Shelf, providing full coverage of the Atlantic Canadian coast. Estimates from this survey have not yet been corrected for availability and perception biases (Lawson and Gosselin 2009).

<table>
<thead>
<tr>
<th>Month/Year</th>
<th>Area</th>
<th>N_{best}</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug 2002</td>
<td>S. Gulf of Maine to Maine</td>
<td>5,408</td>
<td>0.56</td>
</tr>
<tr>
<td>Jun-Aug 2004</td>
<td>Maryland to Bay of Fundy</td>
<td>15,728</td>
<td>0.34</td>
</tr>
<tr>
<td>Jun-Aug 2004</td>
<td>Florida to Maryland</td>
<td>21,056</td>
<td>0.54</td>
</tr>
<tr>
<td>Jun-Aug 2004</td>
<td>Florida to Bay of Fundy (COMBINED)</td>
<td>36,784</td>
<td>0.34</td>
</tr>
<tr>
<td>Aug 2006</td>
<td>S. Gulf of Maine to upper Bay of Fundy to Gulf of St. Lawrence</td>
<td>26,535</td>
<td>0.35</td>
</tr>
<tr>
<td>July-Aug 2007</td>
<td>N. Labrador to Scotian Shelf</td>
<td>6,134</td>
<td>0.28</td>
</tr>
</tbody>
</table>

Spatial Distribution and Abundance Estimates for *Globicephala macrorhynchus*

Biopsy samples from pilot whales were collected during summer months (June-August) from South Carolina to the southern flank of Georges Bank between 1998 and 2007. These samples were identified to species using genetic analysis of mitochondrial DNA sequences. A portion of the mtDNA genome was sequenced from each biopsy sample collected in the field, and genetic species identification was performed through phylogenetic reconstruction of the haplotypes. Stranded specimens that were morphologically identified to species were used to assign clades in
the phylogeny to species and thereby identify all samples. Based upon the date and location of sample collection, the probability of a sample being from a short-finned (or long-finned) pilot whale was evaluated as a function of sea surface temperature and water depth using logistic regression. This analysis indicated that the probability of a sample coming from a short-finned pilot whales was near 0 at water temperatures < 22°C, and near 1 at temperatures >25°C. The probability of a short-finned pilot whale also increased with increasing water depth. Spatially, during summer months, this habitat model predicts that all pilot whales observed in offshore waters near the Gulf Stream are most likely short-finned pilot whales. The area of overlap between the 2 species occurred primarily along the shelf break off the coast of New Jersey between 38°N and 40°N latitude. This habitat model was used to partition the abundance estimates from surveys conducted during the summer of 2004. The survey covering waters from Florida to Maryland was predicted to consist entirely of short-finned pilot whales. The aerial portion of the northeast survey covering the Gulf of Maine and the Bay of Fundy and surveys conducted in Canadian waters were predicted to consist entirely of long-finned pilot whales. The vessel portion of the northeast survey contained a mix of both species, with the sightings in offshore waters near the Gulf Stream predicted to consist of short-finned pilot whales. The best abundance estimate for short-finned pilot whales is thus the sum of the southeast survey estimate (21,056 [CV=0.54]) and the estimated number of short-finned pilot whales from the northeast vessel survey (3,618 [CV=0.50]). The best available abundance estimate is thus 24,674 (CV=0.45) (Garrison et al., in prep; Garrison et al., in press).

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normally distributed best abundance estimate. This is equivalent to the 20th percentile of the log-normal distribution as specified by Wade and Angliss (1997). The best estimate of abundance for western North Atlantic *Globicephala macrorhynchus* is 24,674 animals (CV=0.45). The minimum population estimate is 17,190.

Current Population Trend

There are insufficient data to determine population trends for *Globicephala macrorhynchus*.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. Life history parameters that could be used to estimate net productivity obtained from short-finned pilot whales taken in fisheries off the Pacific coast of Japan. In this region, there are 2 distinct stocks of short-finned pilot whales described as “northern” and “southern” types. There were demonstrable differences in the demographic parameters of these 2 forms perhaps related to habitat differences (Kasuya and Tai 1993). The northern form was generally larger and had a later age at sexual maturity than the southern form. The ranges of values for demographic parameters for both stocks are: calving interval 5.1 – 7.8 years; lactation period about 2.0 - 2.78 years; gestation period approximately 15 months; length at birth 140 – 185 cm; mean length at sexual maturity of 420 – 560 cm for males and 316-400 cm for females; mean age at sexual maturity of 17 years for males and 8 - 9 years for females; and maximum age of 45 for males and 62 for females (Kasuya and Tai 1993).

For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04. This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum productivity rate, and a “recovery” factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size for short-finned pilot whales is 17,190. The maximum productivity rate is 0.04, the default value for cetaceans. The “recovery” factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP), is assumed to be 0.5 because the CV of the average mortality estimate is less than 0.3 (Wade and Angliss 1997). PBR for the western North Atlantic short-finned pilot whale is 172.

ANNUAL HUMAN-CAUSED MORTALITY

The total annual human caused mortality of short-finned pilot whales cannot be determined. The highest bycatch rates in the pelagic longline fishery area were observed during September – October along the mid-Atlantic coast (Garrison 2007). In bottom trawls, most mortalities were observed in the same area between July and November (Rossman 2010). The model used to derive abundance estimates uses data restricted to the warmest
months of the year (June-August), and there are currently very few data available for the potential area of overlap during the fall. Therefore it is not possible to partition mortality estimates between the 2 species because there are very few available genetic samples from the area of overlap and season where most mortality occurs. Mortality and serious injury estimates are thus presented only for the 2 species combined. Total annual estimated average fishery-related mortality or serious injury during 2005-2009 was 162 pilot whales (CV=0.15; Table 2). Of this, it is most likely that the mortality due to the pelagic longline fishery, the mid-Atlantic midwater trawl fishery, and the mid-Atlantic groundfish fishery have the most direct impact on short-finned pilot whales.

Fishery Information

Detailed fishery information is reported in Appendix III. Total fishery-related mortality and serious injury cannot be estimated separately for the 2 species of pilot whales in the U.S. Atlantic EEZ because of the uncertainty in species identification by fishery observers. The Atlantic Scientific Review Group advised adopting the risk-averse strategy of assuming that either species might have been subject to the observed fishery-related mortality and serious injury.

Earlier Interactions

Prior to 1977, there was no documentation of marine mammal bycatch in distant-water fleet (DWF) activities off the northeastern coast of the U.S. A fishery observer program, which has collected fishery data and information on incidental bycatch of marine mammals, was established in 1977 with the implementation of the Fisheries Conservation and Management Act (FCMA).

During 1977-1991, observers in this program recorded 436 pilot whale mortalities in foreign-fishing activities (Waring et al. 1990; Waring 1995). A total of 391 pilot whales (90%) were taken in the mackerel fishery, and 41 (9%) occurred during *Loligo* and *Illex* squid-fishing operations. This total includes 48 documented takes by U.S. vessels involved in joint-venture fishing operations in which U.S. captains transfer their catches to foreign processing vessels. Two animals were also caught in both the hake and tuna longline fisheries (Waring et al. 1990).

Between 1989 and 1998, 87 mortalities were observed in the large pelagic drift gillnet fishery. The annual fishery-related mortality (CV in parentheses) was 77 in 1989 (0.24), 132 in 1990 (0.24), 30 in 1991 (0.26), 33 in 1992 (0.16), 31 in 1993 (0.19), 20 in 1994 (0.06), 9.1 in 1995 (0), 11 in 1996 (0.17), no fishery in 1997 and 12 in 1998 (0). This fishery was permanently closed in 1999.

Five pilot whale (*Globicephala* sp.) mortalities were reported in the self-reported fisheries information for the Atlantic tuna pair trawl in 1993. In 1994 and 1995 observers reported 1 and 12 mortalities, respectively. The estimated fishery-related mortality to pilot whales in the U.S. Atlantic attributable to this fishery in 1994 was 2.0 (CV=0.49) and 22 (CV=0.33) in 1995.

Two interactions with pilot whales in the Atlantic tuna purse seine fishery were observed in 1996. In 1 interaction, the net was pursed around 1 pilot whale, the rings were released and the animal escaped alive, condition unknown. This set occurred east of the Great South Channel and just north of the Cultivator Shoals region on Georges Bank. In a second interaction, 5 pilot whales were encircled in a set. The net was opened prior to pursing to let the whales swim free, apparently uninjured. This set occurred on the Cultivator Shoals region on Georges Bank. No trips were observed during 1997 through 1999. Four trips were observed in September 2001 with no marine mammals observed taken during these trips.

No pilot whales were taken in observed mid-Atlantic coastal gillnet trips during 1993-1997. One pilot whale was observed in 1998, and none were observed taken from 1999-2003. Observed effort was scattered between New York and North Carolina from 1 to 50 miles off the beach. All bycatches were documented during January to April. Using the observed takes, the estimated annual mortality attributed to this fishery was 7 in 1998 (CV=1.10).

One pilot whale was observed in the *Illex* squid portion of the southern New England/mid-Atlantic squid, mackerel, butterfish trawl fisheries in 1996 and 1 in 1998. The estimated fishery-related mortality to pilot whales in the U.S. Atlantic attributable to this fishery was 45 in 1996 (CV=1.27), 0 in 1997, 85 in 1998 (CV=0.65) and 0 in 1999. However, these estimates should be viewed with caution due to the extremely low (<1%) observer coverage. After 1999 this fishery is included as a component of the mid-Atlantic bottom trawl fishery.

One pilot whale trawl was observed in the *Loligo* squid portion of the southern New England/mid-Atlantic squid, mackerel, and butterfish trawl fisheries in 1999. The estimated fishery-related mortality to pilot whales in the U.S. Atlantic attributable to this fishery was 0 between 1996 and 1998 and 49 in 1999 (CV=0.97). These estimates should, however, be viewed with caution due to the extremely low (<1%) observer coverage. After 1999 this fishery has been included as a component of the mid-Atlantic bottom trawl fishery.

There was 1 observed take in the southern New England/mid-Atlantic bottom trawl fishery reported in 1999. The estimated fishery-related mortality for pilot whales attributable to this fishery was 0 from 1996-1998, and 228
(CV= 1.03) in 1999. After 1999 this fishery has been included as a component of the mid-Atlantic bottom fishery.

A U.S. joint venture (JV) mid-water (pelagic) trawl fishery was conducted on Georges Bank from August to December 2001. Eight pilot whales were incidentally captured in a single mid-water trawl during JV fishing operations. Three pilot whales were incidentally captured in a single mid-water trawl during foreign fishing operations (TALFF).

For more details on the earlier fishery interactions see Waring et al. (2007).

Pelagic Longline

Most of the estimated marine mammal bycatch in the U.S. pelagic longline fishery was recorded in U.S. Atlantic EEZ waters between South Carolina and Cape Cod (Johnson et al. 1999; Yeung 2001; Garrison 2003; Garrison and Richards 2004; Garrison 2005; Fairfield Walsh and Garrison 2006; Fairfield Walsh and Garrison 2007; Fairfield and Garrison 2008). Pilot whales are frequently observed to feed on hooked fish, particularly big-eye tuna (NMFS unpublished data). Between 1992 and 2008, 154 pilot whales were observed released alive, including 83 that were considered seriously injured, and 5 mortalities were observed (Johnson et al. 1999; Yeung 2001; Garrison 2003; Garrison and Richards 2004; Garrison 2005; Fairfield Walsh and Garrison 2006; Fairfield Walsh and Garrison 2007; Fairfield and Garrison 2008; Garrison et al. 2009, Garrison and Stokes, 2010). January-March bycatch was concentrated on the continental shelf edge northeast of Cape Hatteras. Bycatch was recorded in this area during April-June, and larger occurred north of Hydrographer Canyon off the continental shelf in water over 1,000 fathoms (1830 m) deep during April-June. During the July-September period, takes occurred on the continental shelf edge east of Cape Charles, Virginia, and on Block Canyon slope in over 1,000 fathoms of water. October-December bycatch occurred between the 20- and 50-fathom (37- and 92-m) isobaths between Barnegat Bay and Cape Hatteras.

The estimated fishery-related mortality to pilot whales in the U.S. Atlantic (excluding the Gulf of Mexico) attributable to this fishery was: 127 in 1992 (CV=1.00), 0 from 1993-1998, 93 in 1999 (CV=1.00), 24 in 2000 (CV=1.00), 20 (CV=1.00) in 2001, 2 (CV=1.00) in 2002, 0 in 2003-2005, 16 (CV=1.00) in 2006, and 0 in 2007. The estimated serious injuries were 40 (CV=0.71) in 1992, 19 (CV=1.00) in 1993, 232 (CV=0.53) in 1994, 345 (CV=0.51) in 1995, (includes 37 estimated short-finned pilot whales in 1995 (CV=1.00), 0 from 1996 to 1998, 288 (CV=0.74) in 1999, 109 (CV=1.00) in 2000, 50 in 2001 (CV=0.58), 51 in 2002 (CV=0.48), 21 in 2003 (CV=0.78), 74 in 2004 (CV=0.42), 212 in 2005 (CV=0.21), 169 in 2006 (CV=0.31), 57 (CV=0.47) in 2007, 98 (CV=0.42) in 2008, and 17 (CV = 0.70) in 2009. The average ‘combined’ annual mortality in 2005-2009 was 114 pilot whales (CV=0.20) (Table 2).

An experimental fishery was conducted on 6 vessels operating in the Gulf of Mexico and off the U.S. East Coast in 2005, with 100% observer coverage achieved. During this experiment, different hook-baiting techniques with standardized gangion and float line lengths were used, and hook timers and time-depth recorders were attached to the gear. The fishing techniques and gear employed during this experimental fishery do not represent those used during “normal” sighting efforts, and are thus presented separately in Table 2. Three pilot whales were released alive during this experimental fishery, including 1 that was seriously injured (Fairfield Walsh and Garrison 2006).

Mid-Atlantic Bottom Trawl

Two pilot whales were observed taken in the mid-Atlantic bottom trawl in 2000, 4 in 2005, 1 in 2006, 0 in 2007, 0 in 2008, and 0 in 2009. The estimated fishery-related mortality to pilot whales in the U.S. Atlantic attributable to this fishery was: 47 (CV=0.32) in 2000, 39 (CV=0.31) in 2001, 38 (CV=0.36) in 2002, 31 (CV=0.31) in 2003, 35 (CV=0.33) in 2004, 31 (CV=0.31) in 2005, 37 (CV=0.34) in 2006, 37 (CV=0.38) in 2007, 24 (CV=0.36) in 2008, and 23 (CV = 0.35) in 2009. The 2005-2009 average mortality attributed to the mid-Atlantic bottom trawl was 30 animals (CV=0.16) (Table 2).

Northeast Bottom Trawl

Two pilot whales were observed taken in the Northeast bottom trawl in 2004, 4 in 2005, 1 in 2006, 4 in 2007, 5 in 2008, and 3 in 2009. The estimated fishery-related mortality to pilot whales in the U.S. Atlantic attributable to this fishery was: 18 (CV=0.29) in 2000, 30 (CV=0.27) in 2001, 22 (CV=0.26) in 2002, 20 (CV=0.26) in 2003, 15 (CV=0.29) in 2004, 15 (CV=0.30) in 2005, 14 (CV=0.28) in 2006, 12 (CV=0.35) in 2007, 10 (CV=0.34) in 2008, and 9 (CV = 0.35) in 2009. The 2005-2009 average mortality attributed to the northeast bottom trawl was 12 animals (CV=0.14) (Table 2).

Northeast Mid-Water Trawl – Including Pair Trawl

In Sept 2004 a pilot whale was observed taken in the paired mid-water trawl fishery on the northern edge of Georges Bank (off Massachusetts) in a haul that was targeting (and primarily caught) herring. In April 2008, six
pilot whale takes were observed in the single mid-water trawl fishery in hauls targeting mackerel and located on the southern edge of Georges Bank. Due to small sample sizes, the ratio method was used to estimate the bycatch rate (observed pilot whale takes per observed hours the gear was in the water) for each year, where the paired and single Northeast mid-water trawls were pooled and only hauls that targeted herring or mackerel were used. The VTR herring and mackerel data were used to estimate the total effort (Palka, pers. comm.). Estimated annual fishery-related mortalities were: unknown in 2001-2002, 0 in 2003, and 5.6 (CV=0.92) in 2004, 0 in 2005 to 2007, 16 (CV=0.61) in 2008, and 0 in 2009 (Table 2; Palka pers. comm.). The average annual estimated mortality during 2005-2009 was 3 (CV=0.61).

Mid-Atlantic Mid-Water Trawl Fishery (Including Pair Trawl)

In March 2007 a pilot whale was observed bycaught in the single mid-water fishery in a haul targeting herring that was south of Rhode Island. Due to small sample sizes, the ratio method was used to estimate the bycatch rate (observed pilot whale takes per observed hours the gear was in the water) for each year, where the paired and single Mid-Atlantic mid-water trawls were pooled only hauls that targeted herring or mackerel were used. The VTR herring and mackerel data were used to estimate the total effort (Palka, pers. comm.). Estimated annual fishery-related mortalities were unknown in 2002, 0 in 2003 to 2006, 12.1 (CV=0.99) in 2007 0 in 2008, and 0 in 2009 (Table 2; Palka pers. com.). The average annual estimated mortality during 2005-2009 was 2.4 (CV=0.99).

CANADA

Unknown numbers of long-finned pilot whales have also been taken in Newfoundland and Labrador, and Bay of Fundy groundfish gillnets, Atlantic Canada and Greenland salmon gillnets, and Atlantic Canada cod traps (Read 1994).

Between January 1993 and December 1994, 36 Spanish deep-water trawlers, covering 74 fishing trips (4,726 fishing days and 14,211 sets), were observed in NAFO Fishing Area 3 (off the Grand Banks) (Lens 1997). A total of 47 incidental catches was recorded, which included 1 long-finned pilot whale. The incidental mortality rate for pilot whales was 0.007/set.

In Canada, the fisheries observer program places observers on all foreign fishing vessels, on between 25% and 40% of large Canadian vessels (greater than 100 ft), and on approximately 5% of small vessels (Hooker et al. 1997). Fishery observer effort off the coast of Nova Scotia during 1991-1996 varied on a seasonal and annual basis, reflecting changes in fishing effort (Hooker et al. 1997). During the 1991-1996 periods, long-finned pilot whales were bycaught (number of animals in parentheses) in bottom trawl (65); midwater trawl (6); and longline (1) gear. Recorded bycatches by year were: 16 in 1991, 21 in 1992, 14 in 1993, 3 in 1994, 3 in 1995 and 6 in 1996. Pilot whale bycatches occurred in all months except January-March and September (Hooker et al. 1997).

There was 1 record of incidental catch in the offshore Greenland halibut fishery that involved 1 long-finned pilot whale in 2001 although no expanded bycatch estimate was calculated (Benjamins et al. 2007).

<p>| Table 2. Summary of the incidental mortality and serious injury of pilot whales (Globicephala sp.) by commercial fishery including the years sampled (Years), the type of data used (Data Type), the annual observer coverage (Observer Coverage), the observed mortalities and serious injuries recorded by on-board observers, the estimated annual mortality and serious injury, the combined annual estimates of mortality and serious injury (Estimated Combined Mortality), the estimated CV of the combined estimates (Estimated CVs) and the mean of the combined estimates (CV in parentheses). |
|---------------------------------|---------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-------------------|</p>
<table>
<thead>
<tr>
<th>Fishery</th>
<th>Year</th>
<th>Data Type</th>
<th>Observer Coverage</th>
<th>Observed Serious Injury</th>
<th>Observed Mortality</th>
<th>Estimated Serious Injury</th>
<th>Estimated Mortality</th>
<th>Estimated Combined Mortality</th>
<th>Estimated CVs</th>
<th>Mean Annual Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mid-Atlantic Bottom Trawl¹</td>
<td>05-09</td>
<td>Obs. Data Dealer</td>
<td>0.03, 0.02, 0.03, 0.05</td>
<td>0, 0, 0, 0, 0</td>
<td>4, 1, 0, 0, 0</td>
<td>0, 0, 0, 0, 0</td>
<td>31, 37, 36, 24, 23</td>
<td>31, 37, 36, 24, 23</td>
<td>.31, .34, .38, .36, .36</td>
<td>30 (.16)</td>
</tr>
<tr>
<td>Northeast Bottom Trawl¹</td>
<td>05-09</td>
<td>Obs. Data Dealer</td>
<td>0.12, 0.06, 0.08, 0.05</td>
<td>0, 0, 0, 0, 0</td>
<td>2, 4, 1, 4, 5, 3</td>
<td>0, 0, 0, 0</td>
<td>15, 14, 12, 10, 9</td>
<td>15, 14, 12, 10, 9</td>
<td>.30, .28, .35, .34, .36</td>
<td>12 (.14)</td>
</tr>
</tbody>
</table>
Table

<table>
<thead>
<tr>
<th>Region</th>
<th>Method</th>
<th>Data Source</th>
<th>TTV</th>
<th>Percent</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mid-Atlantic Mid-Water Trawl - Including Pair Trawl<sup>a</sup></td>
<td>05-09</td>
<td>Obs. Data Dealer Data VTR Data</td>
<td>.08, .09, .04, .13, .13</td>
<td>0, 0, 0, 0, 0</td>
<td>0, 0, 0, 0</td>
<td>0, 0, 0, 0, 0</td>
<td>0, 0, 12, 0, 0</td>
<td>0, 0, 12, 0, 0</td>
<td>0, 0, 0.99, 0, 0</td>
<td>2.4 (0.99)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northeast Mid-Water Trawl - Including Pair Trawl<sup>b</sup></td>
<td>05-09</td>
<td>Obs. Data Dealer Data VTR Data</td>
<td>.20, .03, .08, .20, .42</td>
<td>0, 0, 0, 0, 0</td>
<td>0, 0, 0, 0, 0</td>
<td>0, 0, 0, 0, 0</td>
<td>0, 0, 0, 16, 0</td>
<td>0, 0, 0, 16, 0</td>
<td>0, 0, 0, .61, 0</td>
<td>3 (.61)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pelagic Longline</td>
<td>05-09</td>
<td>Obs. Data Logbook</td>
<td>.06, .07, .07, .07, .10</td>
<td>0, 9, 12, 5, 5, 2</td>
<td>0, 1, 0, 0, 0</td>
<td>212, 12, 98, 17</td>
<td>0, 16, 0, 0</td>
<td>212, 185, 57, 98, 17</td>
<td>.21, .47, .65, .42, .70</td>
<td>114 (.20)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005 Pelagic Longline experimental fishery<sup>c</sup></td>
<td>05</td>
<td>Obs. Data</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1 (0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>162 (1.5)</td>
<td></td>
</tr>
</tbody>
</table>

^a Observer data (Obs. Data) are used to measure bycatch rates, and the data are collected within the Northeast Fisheries Observer Program. Mandatory logbook data were used to measure total effort for the longline fishery. These data are collected at the Southeast Fisheries Science Center (SEFSC).

^b Observer coverage of the mid-Atlantic coastal gillnet fishery is a ratio based on tons of fish landed. Observer coverage for the longline fishery is a ratio based on sets. The trawl fisheries are ratios based on trips.

^c NE and MA bottom trawl mortality estimates reported for 2007 to 2009 are a product of GLM estimated bycatch rates (utilizing observer data collected from 2000 to 2005) and 2007 to 2009 effort. For complete documentation of methods used to estimate cetacean bycatch mortality see Rossman (2010).

^d Within each of the fisheries (Northeast and Mid-Atlantic), the paired and single trawl data were pooled. Ratio estimation methods were used within each fishery and year to estimate the total the annual bycatch.

^e A cooperative research program conducted during quarters 2 and 3 in 2005 (Fairfield Walsh and Garrison 2006).

Other Mortality

Pilot whales have a propensity to mass strand throughout their range, but the role of human activity in these events is unknown. Between 2 and 168 pilot whales have stranded annually, either individually or in groups, along the eastern U.S. seaboard since 1980 (NMFS 1993, stranding databases maintained by NMFS NER, NEFSC and SEFSC). From 2004-2008, 44 short-finned pilot whales (Globicephala macrocephalus), 68 long-finned pilot whales (Globicephala melas melas), and 11 pilot whales not specified to the species level (Globicephala sp.) were reported stranded between Maine and Florida, including Puerto Rico and the Exclusive Economic Zone (EEZ) (Table 3). This includes 1 mass stranding of 18 long-finned pilot whales (including 1 pregnant female) as part of a multispecies mass stranding in Barnstable County, Massachusetts, on 10 December 2005.

A Virginia Coastal Small Cetacean Unusual Mortality Event (UME) occurred along the coast of Virginia from 1 May to 31 July 2004, when 66 small cetaceans stranded mostly along the outer (eastern) coast of Virginia’s barrier islands including 1 pilot whale (Globicephala sp.). Human interactions were implicated in 17 of the strandings (1 common and 16 bottlenose dolphins), other potential causes were implicated in 14 strandings (1 Atlantic white-sided dolphin, 2 harbor porpoises and 11 bottlenose dolphins), and no cause could be determined for the remaining strandings, including the pilot whale. A final report on this UME is pending (Barco, in prep.).

An Offshore Small Cetacean UME, was declared when 33 small cetaceans stranded from Maryland to Georgia between July and September 2004. The species involved are generally found offshore and are not expected to strand along the coast. One short-finned pilot whale was involved in this UME.

A UME mass stranding of 33 short-finned pilot whales, including 5 pregnant females, occurred near Cape Hatteras, North Carolina, from 15-16 January 2005. Gross necropsies were conducted and samples were collected for pathological analyses (Hohn et al. 2006), but no single cause for the UME was determined.
Table 3. Pilot whale (*Globicephala macrorhynchus* [SF], *Globicephala melas melas* [LF] and *Globicephala* sp. [Sp]) strandings along the Atlantic coast, 2004-2008. Strandings that were not reported to species have been reported as *Globicephala* sp. The level of technical expertise among stranding network personnel varies, and given the potential difficulty in correctly identifying stranded pilot whales to species, reports to specific species should be viewed with caution.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nova Scotia*</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Newfoundland and Labrador*</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Maine*</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>8</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Hampshire</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Massachusetts*</td>
<td>0</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>35</td>
<td>1</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>New York</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>New Jersey</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Delaware</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Maryland</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Virginia*</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>North Carolina*</td>
<td>35</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>40</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>South Carolina</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Florida</td>
<td>0</td>
</tr>
<tr>
<td>EEZ</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>TOTALS - U.S., Puerto Rico, & EEZ</td>
<td>35</td>
<td>35</td>
<td>4</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>3</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td>11</td>
<td>0</td>
<td>43</td>
<td>69</td>
<td>9</td>
</tr>
</tbody>
</table>

* Data supplied by Tonya Wimmer, Nova Scotia Marine Animal Response Society (pers. comm.).

b * (Ledwell and Huntington 2004; 2006; 2007; 2008; 2009).

c Long-finned pilot whale stranded in Maine in 2007 released alive.

d Includes 18 pilot whales which were part of a multi-species mass stranding in Brewster on 10 December 2005. One of the strandings in 2007 classified as human interaction due to attempts to herd the animal to deeper water. One of the 2009 animals was classified as a fishery interaction.

e One pilot whale stranded in Virginia in 2004 during an Unusual Mortality Event but was not identified to species (decomposed and decapitated). Sign of human interaction (a line on the flukes) observed on 2 animals in 2005, and 1 animal was a pregnant female.

f In 2004, 1 short-finned pilot whale (September) and 1 pilot whale (November) not identified to species stranded in North Carolina during an Unusual Mortality Event (UME). A long-finned pilot whale also stranded in February, not related to any UME. 2005 includes Unusual Mortality Event mass stranding of 33 short-finned pilot whales on 15-16 January, 2005, including 5 pregnant females. Six animals had fishery interaction marks, which were healed and not the cause of death. Signs of fishery interaction observed on a short-finned pilot whale stranded in May 2005.

Short-finned pilot whale strandings (*Globicephala macrorhynchus*) have been reported as far north as Nova Scotia (1990) and Block Island, Rhode Island (2001), though the majority of the strandings occurred from North Carolina southward (Table 3). Long-finned pilot whales (*Globicephala melas*) have been reported stranded as far south as Florida, when 2 long-finned pilot whales were reported stranded in Florida in November 1998, though their flukes had been apparently cut off, so it is unclear where these animals actually may have died. One additional long-finned pilot whale stranded in South Carolina in 2003, though the confidence in the species identification was only moderate. This animal has subsequently been sequenced and mitochondrial DNA analysis supports the long-finned pilot whale identification. Most of the remaining long-finned pilot whale strandings were from North Carolina.
northward (Table 3). During 2005-2009, several human and/or fishery interactions were documented in stranded pilot whales. During a UME in Dare, North Carolina, in January 2005, 6 of the 33 short-finned pilot whales which mass stranded had fishery interaction marks (specifics not given) that were healed and determined not to be the cause of death. A short-finned pilot whale stranded in May 2005 in North Carolina had net marks around the leading edge of the dorsal fin from the top to bottom, and had net marks on both fluke lobes. One long-finned pilot whale that stranded in Massachusetts in 2009 was classified as a human interaction because it had a piece of monofilament line in its stomach. Stranding data probably underestimate the extent of fishery-related mortality and serious injury because all of the marine mammals that die or are seriously injured may not wash ashore, nor will all of those that do wash ashore necessarily show signs of entanglement or other fishery-interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interaction.

A potential human-caused source of mortality is from polychlorinated biphenyls (PCBs) and chlorinated pesticides (DDT, DDE, dieldrin, etc.), moderate levels of which have been found in pilot whale blubber (Taruski et al. 1975; Muir et al. 1988; Weisbrod et al. 2000). Weisbrod et al. (2000) reported that bioaccumulation levels were more similar in whales from the same stranding group than animals of the same sex or age. Also, high levels of toxic metals (mercury, lead, cadmium) and selenium were measured in pilot whales harvested in the Faroe Island drive fishery (Nielsen et al. 2000). Similarly, Dam and Bloch (2000) found very high PCB levels in pilot whales in the Faroes. The population effect of the observed levels of such contaminants is unknown.

STATUS OF STOCK

The status of short-finned pilot whales relative to OSP in the U.S. Atlantic EEZ is unknown. There are insufficient data to determine population trends for this species. The species is not listed under the Endangered Species Act. The total U.S. fishery-related mortality and serious injury for short-finned pilot whales is unknown, since it is not possible to partition mortality estimates between the long-finned and short-finned pilot whales. However, it is most likely not less than 10% of the calculated PBR and therefore cannot be considered to be insignificant and approaching zero mortality and serious injury rate. The total fishery mortality does not exceed PBR, and some portion of the mortality impacts long-finned pilot whales. Therefore, this is not a strategic stock. However, the inability to partition mortality estimates between the species limits the ability to adequately assess the status of this stock.

REFERENCES CITED

ATLANTIC WHITE-SIDED DOLPHIN (*Lagenorhynchus acutus*): Western North Atlantic Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

White-sided dolphins are found in temperate and sub-polar waters of the North Atlantic, primarily in continental shelf waters to the 100-m depth contour. In the western North Atlantic the species inhabits waters from central West Greenland to North Carolina (about 35°N) and perhaps as far east as 29°W in the vicinity of the mid-Atlantic Ridge (Evans 1987; Hamazaki 2002; Doksaeter et al. 2008; Waring et al. 2008). Distribution of sightings, strandings and incidental takes suggest the possible existence of three stock units: Gulf of Maine, Gulf of St. Lawrence and Labrador Sea stocks (Palka et al. 1997). Evidence for a separation between the population in the southern Gulf of Maine and the Gulf of St. Lawrence population comes from a virtual absence of summer sightings along the Atlantic side of Nova Scotia. This was reported in Gaskin (1992), is evident in Smithsonian stranding records, and was obvious during abundance surveys conducted in the summers of 1995 and 1999 which covered waters from Virginia to the Gulf of St. Lawrence and during the Canadian component of the TNASS survey in the summer of 2007 (Lawson and Gosselin 2009). White-sided dolphins were seen frequently in Gulf of Maine waters and in waters at the mouth of the Gulf of St. Lawrence, but only a few sightings were recorded between these two regions.

The Gulf of Maine population of white-sided dolphins is most common in continental shelf waters from Hudson Canyon (approximately 39°N) on to Georges Bank, and in the Gulf of Maine and lower Bay of Fundy. Sightings data indicate seasonal shifts in distribution (Northridge et al. 1997). During January to May, low numbers of white-sided dolphins are found from Georges Bank to Jeffreys Ledge (off New Hampshire), with even lower numbers south of Georges Bank, as documented by a few strandings collected on beaches of Virginia and North Carolina. From June through September, large numbers of white-sided dolphins are found from Georges Bank to the lower Bay of Fundy. From October to December, white-sided dolphins occur at intermediate densities from southern Georges Bank to southern Gulf of Maine (Payne and Heinemann 1990). Sightings south of Georges Bank, particularly around Hudson Canyon, occur year round but at low densities. The Virginia and North Carolina observations appear to represent the southern extent of the species’ range during the winter months.

Recent stomach content analysis of both stranded and incidental caught white-sided dolphins in U.S. waters, determined that the predominant prey were silver hake (*Merluccius bilinearis*), spoonarm octopus (*Bathyopelagus bairdii*), and haddock (*Melanogrammus aeglefinus*). Sand lances (*Ammodomys spp.*) were only found in the stomach of one stranded *L. acutus*. Seasonal variation in diet was indicated; pelagic Atlantic herring (*Clupea harengus*) was the most important prey in summer, but was rare in winter (Craddock et al. 2009).

[Figure 1. Distribution of white-sided dolphin sightings from NEFSC and SEFSC shipboard and aerial surveys during the summers of 1998, 1999, 2002, 2004, 2006 and 2007. Isobaths are the 100-m, 1000-m and 4000-m depth contours.]
POPULATION SIZE

Abundance estimates of white-sided dolphins from various portions of their range are available from: spring, summer and autumn 1978-1982; July-September 1991-1992; June-July 1993; July-September 1995; July-August 1999; August 2002; June-July 2004; August 2006; and July-August 2007. The best available current abundance estimate for white-sided dolphins in the western North Atlantic stock is 23,390 (CV=0.23), the sum of the 2006 and 2007 surveys. While the combined estimate may include a certain amount of inter-annual redistribution, it is still felt to be more representative than either estimate alone. Because the estimated abundance of this species has large inter-annual variability (that is, the estimates were about 51,000 in 1999 and 109,000 in 2002 and about 24,000 recently), the spatial-temporal distribution is being investigated to more completely understand how this species utilizes US waters throughout the year. This investigation will hopefully provide a more accurate representative abundance estimate that would be used to calculate PBR.

Earlier abundance estimates

Please see Appendix IV for earlier abundance estimates. As recommended in the GAMMS Workshop Report (Wade and Angliss 1997), if estimates are older than eight years PBR is undetermined.

Recent surveys and abundance estimates

An abundance estimate of 2,330 (CV=0.80) white-sided dolphins was obtained from a line-transect sighting survey conducted during 12 June to 4 August 2004 by a ship and plane that surveyed 6,180 km of trackline from the 100-m depth contour on southern Georges Bank to the lower Bay of Fundy. The Scotian shelf south of Nova Scotia was not surveyed (Table 1). Shipboard data were collected using the two-independent-team line-transect method and analyzed using the modified direct-duplicate method (Palka 1995) accounting for biases due to school size and other potential covariates, reactive movements (Palka and Hammond 2001), and \(g(0) \), the probability of detecting a group on the trackline. Aerial data were collected using the Hibi circle-back line-transect method (Hibi 1999) and analyzed accounting for \(g(0) \) and biases due to school size and other potential covariates (Palka 2005). The value of aerial \(g(0) \) was derived from the pooled 2002, 2004 and 2006 aerial survey data.

An abundance estimate of 17,594 (CV=0.30) white-sided dolphins was generated from an aerial survey conducted in August 2006 that surveyed 10,676 km of trackline in the region from the 2000-m depth contour on the southern edge of Georges Bank to the upper Bay of Fundy and to the entrance of the Gulf of St. Lawrence. Data were collected using the Hibi circle-back line-transect method (Hibi 1999) and analyzed accounting for \(g(0) \) and biases due to school size and other potential covariates (Palka 2005). The value of \(g(0) \) was derived from the pooled 2002, 2004 and 2006 aerial survey data (Table 1; NMFS 2006).

An abundance estimate of 5,796 (95%CI=2,681-13,088) white-sided dolphins was generated from the Canadian Trans-North Atlantic Sighting Survey (TNASS) in July-August 2007. This aerial survey covered area from northern Labrador to the Scotian Shelf, providing full coverage of the Atlantic Canadian coast. Estimates from this survey have not yet been corrected for availability and perception biases (Lawson and Gosselin 2009).

<table>
<thead>
<tr>
<th>Month/Year</th>
<th>Area</th>
<th>(N_{\text{best}})</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jun-Jul 2004</td>
<td>Gulf of Maine to lower Bay of Fundy</td>
<td>2,330</td>
<td>0.80</td>
</tr>
<tr>
<td>Aug 2006</td>
<td>S. Gulf of Maine to upper Bay of Fundy to Gulf of St. Lawrence</td>
<td>17,594</td>
<td>0.30</td>
</tr>
<tr>
<td>Jul-Aug 2007</td>
<td>N. Labrador to Scotian Shelf</td>
<td>5,796</td>
<td>0.43</td>
</tr>
<tr>
<td>2006 and 2007</td>
<td>Sum of 2006 and 2007 surveys</td>
<td>23,390</td>
<td>0.23</td>
</tr>
</tbody>
</table>

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normally distributed best abundance estimate. This is equivalent to the 20th percentile of the log-normal distribution as specified by (Wade and Angliss 1997). The best estimate of abundance for the western North Atlantic stock of white-sided dolphins is 23,390 (CV=0.23). The minimum population estimate for these white-sided dolphins is
19,019.

Current Population Trend
A trend analysis has not been conducted for this species.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES
Current and maximum net productivity rates are unknown for this stock. Life history parameters that could be used to estimate net productivity include: calving interval is 2-3 years; lactation period is 18 months; gestation period is 10-12 months and births occur from May to early August, mainly in June and July; length at birth is 110 cm; length at sexual maturity is 230-240 cm for males, and 201-222 cm for females; age at sexual maturity is 8-9 years for males and 6-8 years for females; mean adult length is 250 cm for males and 224 cm for females (Evans 1987); and maximum reported age for males is 22 years and for females, 27 years (Sergeant et al. 1980).

For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04. This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL
Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum productivity rate, and a “recovery” factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is 19,019. The maximum productivity rate is 0.04, the default value for cetaceans. The “recovery” factor, which accounts for endangered, depleted, threatened, or stocks of unknown status relative to optimum sustainable population (OSP) is assumed to be 0.5 because the CV of the average mortality estimate is less than 0.3 (Wade and Angliss 1997). PBR for the western North Atlantic stock of white-sided dolphin is 190.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY
Total annual estimated average fishery-related mortality or serious injury to this stock during 2005-2009 was 245 (CV=0.12) white-sided dolphins (Table 2).

Fishery Information
Detailed fishery information is reported in Appendix III.

Earlier Interactions
NMFS observers in the Atlantic foreign mackerel fishery reported 44 takes of Atlantic white-sided dolphins incidental to fishing activities in the continental shelf and continental slope waters between March 1977 and December 1991 (Waring et al. 1990; NMFS unpublished data). Of these animals, 96% were taken in the Atlantic mackerel fishery. This total includes 9 documented takes by U.S. vessels involved in joint-venture (JV) fishing operations in which U.S. captains transfer their catches to foreign processing vessels. No incidental takes of white-sided dolphins were observed in the Atlantic mackerel JV fishery when it was observed in 1998.

During 1991 to 1998, two white-sided dolphins were observed taken in the Atlantic pelagic drift gillnet fishery, both in 1993. Estimated annual fishery-related mortality and serious injury (CV in parentheses) was 4.4 (.71) in 1989, 6.8 (.71) in 1990, 0.9 (.71) in 1991, 0.8 (.71) in 1992, 2.7 (0.17) in 1993 and 0 in 1994, 1995, 1996, and 1998. There was no fishery during 1997 and the fishery was permanently closed in 1999.

A U.S. JV mid-water (pelagic) trawl fishery was conducted during 2001 on Georges Bank from August to December. No white-sided dolphins were incidentally captured. Two white-sided dolphins were incidentally captured in a single mid-water trawl during foreign fishing operations (TALFF). During TALFF fishing operations all nets fished by the foreign vessel are observed. The total mortality attributed to the Atlantic herring JV and TALFF mid-water trawl fisheries in 2001 was two animals.

The mid-Atlantic gillnet fishery occurs year round from New York to North Carolina and has been observed since 1993. One white-sided dolphin was observed taken in this fishery during 1997. None were observed taken in other years. The estimated annual mortality (CV in parentheses) attributed to this fishery was 0 for 1993 to 1996, 45 (0.82) for 1997, 0 for 1998 to 2001, unknown in 2002 and 0 in 2003-2009.

U.S. Northeast Sink Gillnet
Estimated annual white-sided dolphin mortalities (CV in parentheses) attributed to the Northeast sink gillnet fishery were 49 (0.46) in 1991, 154 (0.35) in 1992, 205 (0.31) in 1993, 240 (0.51) in 1994, 80 (1.16) in 1995, 114
(0.61) in 1996 (Bisack 1997), 140 (0.61) in 1997, 34 (0.92) in 1998, 69 (0.70) in 1999, 26 (1.00) in 2000, 26 (1.00) in 2001, 30 (0.74) in 2002, 31 (0.93) in 2003, 7 (0.98) in 2004, 59 (0.49) in 2005, 41 (0.71) in 2006, 0 in 2007, 81 (0.57) in 2008, and 0 in 2009. Average annual estimated fishery-related mortality during 2005-2009 was 36 white-sided dolphins per year (0.34; Table 2).

Northeast Bottom Trawl

White-sided dolphin mortalities documented between 1991 and 2009 in the Northeast bottom trawl fishery were 1 during 1992, 0 in 1993, 2 in 1994, 0 in 1995-2001, 1 in 2002, 12 in 2003, 16 in 2004, 47 in 2005, 4 in 2006, 1 in 2007, 3 in 2008 and 31 in 2009. Estimated annual fishery-related mortalities (CV in parentheses) were 110 (0.97) in 1992, 0 in 1993, 182 (0.71) in 1994, 0 in 1995-1999, 137 (0.34) in 2000, 161 (0.34) in 2001, 70 (0.32) in 2002, 216 (0.27) in 2003, 200 (0.30) in 2004, 213 (0.28) in 2005, 164 (0.34) in 2006, 147 (0.35) in 2007, 147 (0.32) in 2008, and 131 in 2009. The 2005-2009 average mortality attributed to the Northeast bottom trawl was 160 animals (0.14; Table 2).

Northeast Mid-water Trawl Fishery (Including Pair Trawl)

In September 2005 three white-sided dolphins were observed taken in paired trawls targeting herring that were located near Jeffreys Bank (off Maine). Due to small sample sizes, the ratio method was used to estimate the bycatch rate (observed white-sided dolphin takes per observed hours the gear was in the water) for each year, where the paired and single Northeast mid-water trawls were pooled and only hauls that targeted herring and mackerel were used. The VTR herring and mackerel data were used to estimate the total effort in the bycatch estimate (Palka, pers. comm.). Estimated annual fishery-related mortalities (CV in parentheses) were unknown in 2001-2002, 22 (0.97) in 2003, 0 in 2004, 9.4 (1.03) in 2005, and 0 in 2006 to 2009 (Table 2; Palka pers. comm.). The average annual estimated fishery-related mortality during 2005-2009 was 1.9 (1.03; Table 2).

Mid-Atlantic Mid-water Trawl Fishery (Including Pair Trawl)

In March 2005, five white-sided dolphins were observed taken in paired trawls targeting mackerel that were off Virginia. In February 2006, three animals were observed taken in mackerel paired mid-water trawls north of Hudson Canyon. In March 2007, an animal was observed taken in a mackerel single mid-water trawl near Hudson Canyon. In January and February 2008 three animals were observed in herring single mid-water trawls north of Hudson Canyon. In March 2009 an animal was observed in a pair trawl targeting mackerel south of Hudson Canyon. Due to small sample sizes, the ratio method was used to estimate the bycatch rate (observed white-sided dolphin takes per observed hours the gear was in the water) for each year, where the paired and single Mid-Atlantic mid-water trawls were pooled and only hauls that targeted herring and mackerel were used. The VTR herring and mackerel data were used to estimate the total effort in the bycatch estimate (Palka, pers. comm.). Estimated annual fishery-related mortalities (CV in parentheses) were unknown in 2001-2002, 0 in 2003, 22 (0.99) in 2004, 58 (1.02) in 2005, 29 (0.74) in 2006, 12 (0.98) in 2007, 15 (0.73) in 2008, and 4 (0.92) in 2009 (Table 2; Palka pers. comm.). The average annual estimated fishery-related mortality during 2005-2009 was 24 (0.55; Table 2).

Mid-Atlantic Bottom Trawl Fishery

One white-sided dolphin incidental take was observed in 1997, resulting in a mortality estimate of 161 (CV=1.58) animals. No takes were observed from 1998 through 2004 or in 2006 or 2008-2009; one take was observed in 2005 and 2 in 2007. Estimated annual fishery-related mortalities (CV in parentheses) were 27 (0.17) in 2000, 27 (0.19) in 2001, 25 (0.17) in 2002, 31 (0.25) in 2003, 26 (0.20) in 2004, 38 (0.29) in 2005, 26 (0.25) in 2006, 21 (0.24) in 2007, 16 (0.18) in 2008, and 16 (0.16) in 2009. The 2005-2009 average mortality attributed to the mid-Atlantic bottom trawl was 23 animals (0.12; Table 2).
Table 2. Summary of the incidental mortality of white-sided dolphins (*Lagenorhynchus acutus*) by commercial fishery including the years sampled (Years), the type of data used (Data Type), the annual observer coverage (Observer Coverage), the mortalities recorded by on-board observers (Observed Mortality), the estimated annual mortality (Estimated Mortality), the estimated CV of the annual mortality (Estimated CVs) and the mean annual mortality (CV in parentheses).

<table>
<thead>
<tr>
<th>Fishery</th>
<th>Years</th>
<th>Data Type</th>
<th>Observer Coverage</th>
<th>Observed Mortality</th>
<th>Estimated Mortality</th>
<th>Estimated CVs</th>
<th>Mean Annual Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northeast Sink Gillnet*</td>
<td>05-09</td>
<td>Obs. Data Weighout Trip Logbook</td>
<td>.07, .04, .07, .05, .04</td>
<td>5, 2, 0, 4, 0</td>
<td>59, 41, 0, 81, 0</td>
<td>.49, .71, 0, .57, 0</td>
<td>36 (0.34)</td>
</tr>
<tr>
<td>Northeast Bottom Trawl*</td>
<td>05-09</td>
<td>Obs. Data Weighout Trip Logbook</td>
<td>.12, .06, .06, .08, .09</td>
<td>47, 4, 1, 3, 31</td>
<td>213, 164, 147, 147, 131</td>
<td>.28, .34, .35, .32, .26</td>
<td>160 (0.14)</td>
</tr>
<tr>
<td>Northeast Mid-water Trawl - Including Pair Trawl</td>
<td>05-09</td>
<td>Obs. Data Weighout Trip Logbook</td>
<td>.199, .031, .08, .199, .42</td>
<td>3, 0, 0, 0, 0</td>
<td>0, 9, 0, 0, 0</td>
<td>0, 1.03, 0, 0, 0</td>
<td>1.9 (1.03)</td>
</tr>
<tr>
<td>Mid-Atlantic Mid-water Trawl - Including Pair Trawl</td>
<td>05-09</td>
<td>Obs. Data Weighout Trip Logbook</td>
<td>.084, .089, .039, .133, .132</td>
<td>5, 3, 1, 3, 1</td>
<td>58, 29, 12, 15, 4</td>
<td>1.02, .74, .98, .73, .92</td>
<td>24 (0.55)</td>
</tr>
<tr>
<td>Mid-Atlantic Bottom Trawl*</td>
<td>05-09</td>
<td>Obs. Data Weighout Trip Logbook</td>
<td>.03, .02, .03, .03, .05</td>
<td>1, 0, 2, 0, 0</td>
<td>38, 26, 21, 16, 16</td>
<td>.29, .25, .24, .18, .16</td>
<td>23 (.12)</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>245 (0.12)</td>
</tr>
</tbody>
</table>

a Observer data (Obs. Data), used to measure bycatch rates, are collected within the Northeast Observer Program. NEFSC collects landings data (Weighout) that are used as a measure of total effort in the Northeast gillnet fishery. Mandatory Vessel Trip Report (VTR) (Trip Logbook) data are used to determine the spatial distribution of fishing effort in the sink gillnet fishery and in the two mid-water trawl fisheries. In addition, the Trip Logbooks are the primary source of the measure of total effort (soak duration) in the mid-water and bottom trawl fisheries.

b Observer coverages for the Northeast sink gillnet are ratios based on metric tons of fish landed. Observer coverages of the trawl fisheries are ratios based on trips.

c NE and MA bottom trawl mortality estimates reported for 2008 are a product of GLM estimated bycatch rates (utilizing observer data collected from 2000 to 2005) and 2008 effort (Rossman 2010). NE and MA bottom trawl mortality estimates reported for 2009 are a product of GLM estimated bycatch rates (utilizing observer data collected from 2000 to 2005) and 2009 effort (Rossman 2010).

d After 1998, a weighted bycatch rate was applied to effort from both pingered and non-pingered hauls within the stratum where white-sided dolphins were observed taken. During the years 1997, 1999, 2001, 2002, and 2004, respectively, there were 2, 1, 1, 1, and 1 observed white-sided dolphins taken on pingered trips. No takes were observed on pinger trips during 1995, 1996, 1998, 2000, 2005 through 2007. Three of the 2008 takes were on non-pingered hauls and the fourth take was recorded as pinger condition unknown.

CANADA

There is little information available that quantifies fishery interactions involving white-sided dolphins in Canadian waters. Two white-sided dolphins were reported caught in groundfish gillnet sets in the Bay of Fundy during 1985 to 1989, and 9 were reported taken in West Greenland between 1964 and 1966 in the now non-operational salmon drift nets (Gaskin 1992). Several (number not specified) were also taken during the 1960s in the now non-operational Newfoundland and Labrador groundfish gillnets. A few (number not specified) were taken in an experimental drift gillnet fishery for salmon off West Greenland which took place from 1965 to 1982 (Read 1994).

Hooker et al. (1997) summarized bycatch data from a Canadian fisheries observer program that placed observers on all foreign fishing vessels operating in Canadian waters, on 25-40% of large Canadian fishing vessels (greater than 100 feet long), and on approximately 5% of smaller Canadian fishing vessels. Bycaught marine mammals were noted as weight in kilos rather than by the numbers of animals caught. Thus the number of individuals was estimated by dividing the total weight per species per trip by the maximum recorded weight of each species. During 1991 through 1996, an estimated 6 white-sided dolphins were observed taken. One animal was from a longline trip south of the Grand Banks (43° 10' N 53° 08' W) in November 1996 and the other 5 were taken in the bottom trawl fishery off Nova Scotia in the Atlantic Ocean; 1 in July 1991, 1 in April 1992, 1 in May 1992, 1 in April 1993, 1 in June 1993 and 0 in 1994 to 1996.
Estimation of small cetacean bycatch for Newfoundland fisheries using data collected during 2001 to 2003 (Benjamins et al. 2007) indicated that, while most of the estimated 862 to 2,228 animals caught were harbor porpoises, a few were white-sided dolphins caught in the Newfoundland nearshore gillnet fishery and offshore monkfish/skate gillnet fisheries.

Herring Weirs
During the last several years, one white-sided dolphin was released alive and unharmed from a herring weir in the Bay of Fundy (A. Westgate, pers. comm.). Due to the formation of a cooperative program between Canadian fishermen and biologists, it is expected that most dolphins and whales will be able to be released alive. Fishery information is available in Appendix III.

Other Mortality
U.S.
During 2005-2009 there were 245 documented Atlantic white-sided dolphin strandings on the US Atlantic coast (Table 3). Forty of these animals were released alive. Human interaction was indicated in 14 records during this period. Of these, one was classified as a fishery interaction.
Mass strandings involving up to a hundred or more animals at one time are common for this species. The causes of these strandings are not known. Because such strandings have been known since antiquity, it could be presumed that recent strandings are a normal condition (Gaskin 1992). It is unknown whether human causes, such as fishery interactions and pollution, have increased the number of strandings. An Unusual Mortality Event (UME) was declared in 2008 due to a relatively high number of strandings between January and April 2008, from New Jersey to North Carolina. Five white-sided dolphins were involved in this event (http://www.nmfs.noaa.gov/pr/health/mmume/midatlantic2008.htm, accessed 19 April 2011). Stranding data probably underestimate the extent of fishery-related mortality and serious injury because all of the marine mammals that die or are seriously injured may not wash ashore, nor will all of those that do wash ashore necessarily shows signs of entanglement or other fishery-interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interaction.

CANADA
Small numbers of white-sided dolphins have been hunted off southwestern Greenland and they have been taken deliberately by shooting elsewhere in Canada (Reeves et al. 1999). The Nova Scotia Stranding Network documented whales and dolphins stranded on the coast of Nova Scotia during 1991 to 1996 (Hooker et al. 1997). Researchers with Dept. of Fisheries and Oceans (DFO), Canada documented strandings on the beaches of Sable Island during 1970 to 1998 (Lucas and Hooker 2000). Sable Island is approximately 170 km southeast of mainland Nova Scotia. White-sided dolphins stranded at nearly all times of the year on the mainland and on Sable Island. On the mainland of Nova Scotia, a total of 34 stranded white-sided dolphins was recorded between 1991 and 1996: 2 in 1991 (August and October), 26 in July 1992, 1 in Nov 1993, 2 in 1994 (February and November), 2 in 1995 (April and August) and 2 in 1996 (October and December). During July 1992, 26 white-sided dolphins stranded on the Atlantic side of Cape Breton. Of these, 11 were released alive and the rest were found dead. Among the rest of the Nova Scotia strandings, one was found in Minas Basin, two near Yarmouth and the rest near Halifax. On Sable Island, 10 stranded white-sided dolphins were documented between 1991 and 1998; all were males, 7 were young males (< 200 cm), 1 in January 1993, 5 in March 1993, 1 in August 1995, 1 in December 1996, 1 in April 1997 and 1 in February 1998.
Whales and dolphins stranded between 1997 and 2009 on the coast of Nova Scotia as recorded by the Marine Animal Response Society (MARS) and the Nova Scotia Stranding Network are as follows (Table 3): 0 white-sided dolphins stranded in 1997 to 2000, 3 in September 2001 (released alive), 5 in November 2002 (4 were released alive), 0 in 2003, 19-24 in 2004 (15-20 in October (some (unspecified) were released alive) and 4 in November were released alive), 0 in 2005, and 1 in 2006, 8-10 in 2007 (all but 3 released alive), 3 (one released alive) in 2008, and 4 (3 released alive) in 2009 (T. Wimmer, pers. comm.).
White-sided dolphins recorded by the Whale Release and Strandings Program in Newfoundland and Labrador are as follows: 1 animal (released alive) in 2004, 1 in 2005 (dead), 3 in 2006 (all dead), 1 in 2007 (released alive) 2 in 2008 (one released alive and one dead), and 3 (all dead) in 2009 (Ledwell and Huntington 2004; 2006; 2007; 2008; 2009:2010).
<table>
<thead>
<tr>
<th>Area</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maine</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Massachusettsa,b</td>
<td>60</td>
<td>49</td>
<td>18</td>
<td>33</td>
<td>22</td>
<td>182</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Connecticut</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>New Yorkc</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>New Jersey</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>Delaware</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Maryland</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Virginiab</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>North Carolina</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>South Carolina</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL US</td>
<td>79</td>
<td>66</td>
<td>25</td>
<td>42</td>
<td>33</td>
<td>245</td>
</tr>
<tr>
<td>Nova Scotia</td>
<td>0</td>
<td>1</td>
<td>9</td>
<td>3</td>
<td>4</td>
<td>17</td>
</tr>
<tr>
<td>Newfoundland and Labrador</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>GRAND TOTAL</td>
<td>80</td>
<td>70</td>
<td>35</td>
<td>47</td>
<td>40</td>
<td>272</td>
</tr>
</tbody>
</table>

a Records of mass strandings in Massachusetts during this period are: February 2005 - 8 animals (3 released alive); April 2005 - 6 animals (all released alive); May 2005 strandings of 2 animals (both released alive but one died later); 3 animals (one released alive) and 5 animals; December 2005 - 2 animals; January 2006 - 4 separate events involving 23 white-sided dolphins (5 released alive); February 2006 - 2 events involving 1 and 5 animals; July 2006 - 9 animals (7 released alive); January 2007 - 9 animals (3 released alive); September 2007 - 3 animals; January 2008 - 17 animals, February 2008 - 3 animals (2 released alive); September 2009 - 3 events of 2, 3 and 4 animals (all but 1 released alive); April 2009 - 3 animals (all released alive).

b In 2005, 5 animals had signs of human interaction but in no case was the human interaction able to be determined to be the cause of death. In 2006, 1 animal from Massachusetts was classified as having signs of fishery interaction. In 2008, 2 animals from Massachusetts and one from South Carolina were classified as human interactions. In 2009, the 4 animals that mass-stranded in September and were released alive, as well as a March stranding that a bystanded had attempted to rescue were classified at human interactions.

c Records of mass strandings in New York during this period are: September 2007 - 3 animals.
STATUS OF STOCK

The status of white-sided dolphins, relative to OSP, in the U.S. Atlantic EEZ is unknown. The species is not listed as threatened or endangered under the Endangered Species Act. A trend analysis has not been conducted for this species. The total U.S. fishery-related mortality and serious injury for this stock is not less than 10% of the calculated PBR and, therefore, cannot be considered to be insignificant and approaching zero mortality and serious injury rate. This is a strategic stock because the 2005-2009 estimated average annual human related mortality exceeds PBR.

Because the estimated abundance of this species has large inter-annual variability (that is, the estimates were about 51,000 in 1999 and 109,000 in 2002 and about 24,000 recently), the spatial-temporal distribution is being investigated to more completely understand how this species utilizes US waters throughout the year. This investigation will hopefully provide a more accurate representative abundance estimate that would be used to calculate PBR.

REFERENCES CITED

Ledwell, W. and J. Huntington 2009. Incidental entrapments in fishing gear and strandings reported to the whale release and strandings group in Newfoundland and Labrador and a summary of the Whale Release and
Strandings Program during 2008. A report to the Department of Fisheries and Oceans Canada, St. John's, Newfoundland, Canada 29 pp..
Ledwell, W. and J. Huntington 2010. Whale, leatherback sea turtles. and basking sharks entrapped in fishing gear in Newfoundland and Labrador and a summary or the strandings, sightings and education work during 2009-2010. A preliminary report to Fisheries and Oceans Canada, St. John's, Newfoundland, Canada 20 pp.
SHORT-BEAKED COMMON DOLPHIN (*Delphinus delphis delphis*):
Western North Atlantic Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

The common dolphin may be one of the most widely distributed species of cetaceans, as it is found world-wide in temperate and subtropical seas. In the North Atlantic, common dolphins occur over the continental shelf along the 100-2000-m isobaths and over prominent underwater topography and east as to the mid-Atlantic Ridge (29°W) (Doksaeter et al. 2008; Waring et al. 2008). The species is less common south of Cape Hatteras, although schools have been reported as far south as the Georgia/South Carolina border (32° N) (Jefferson et al. 2009). In waters off the northeastern USA coast common dolphins are distributed along the continental slope and are associated with Gulf Stream features (CETAP 1982; Selzer and Payne 1988; Waring et al. 1992; Hamazaki 2002). They occur from Cape Hatteras northeast to Georges Bank (35° to 42°N) during mid-January to May (Hain et al. 1981; CETAP 1982; Payne et al. 1984). Common dolphins move onto Georges Bank and the Scotian Shelf from mid-summer to autumn. Selzer and Payne (1988) reported very large aggregations (greater than 3,000 animals) on Georges Bank in autumn. Common dolphins are occasionally found in the Gulf of Maine (Selzer and Payne 1988). Migration onto the Scotian Shelf and continental shelf off Newfoundland occurs during summer and autumn when water temperatures exceed 11°C (Sergeant et al. 1970; Gowans and Whitehead 1995).

Westgate (2005) tested the proposed one-population-stock model using a molecular analysis of mitochondrial DNA (mtDNA), as well as a morphometric analysis of cranial specimens. Both genetic analysis and skull morphometrics failed to provide evidence (p>0.05) of more than a single population in the western North Atlantic, supporting the proposed one stock model. However, when western and eastern North Atlantic common dolphin mtDNA and skull morphology were compared, both the cranial and mtDNA results showed evidence of restricted gene flow (p<0.05) indicating that these two areas are not panmictic. Cranial specimens from the two sides of the North Atlantic differed primarily in elements associated with the rostrum. These results suggest that common dolphins in the western North Atlantic are composed of a single panmictic group whereas gene flow between the western and eastern North Atlantic is limited (Westgate 2005; 2007).

There is also a peak in parturition during July and August with an average birth day of 28 July. Gestation lasts about 11.7 months and lactation lasts at least a year. Given these results western North Atlantic female common dolphins are likely on a 2-3 year calving interval. Females become sexually mature earlier (8.3 years and 200 cm) than males (9.5 years and 215 cm) as males continue to increase in size and mass. There is significant sexual dimorphism present with males being on average about 9% larger in body length (Westgate 2005; Westgate and Read 2007).

Figure 1. Distribution of common dolphin sightings from NEFSC and SEFSC shipboard and aerial surveys during the summers of 1998, 1999, 2002, 2004, 2006 and 2007. Isobaths are the 100-m, 1000-m and 4000-m depth contours.
POPPULATION SIZE

The total number of common dolphins off the U.S. or Canadian Atlantic coast is unknown, although several abundance estimates are available from selected regions for selected time periods. The best abundance estimate for common dolphins is 120,743 animals (CV=0.23). This is the sum of the estimates from two 2004 U.S. Atlantic surveys, where the estimate from the northern U.S. Atlantic is 90,547 (CV=0.24), and from the southern U.S. Atlantic is 30,196 (CV=0.54). This joint estimate is considered best because these two surveys have the most complete coverage of the species’ habitat (Table 1).

An abundance estimate of 90,547 (CV=0.244) common dolphins was obtained from a line-transect sighting survey conducted during 12 June to 4 August 2004 by a ship and plane that surveyed 10,761 km of trackline in waters north of Maryland (38°N) (Table 1; Palka 2006). Shipboard data were collected using the two-independent-team line-transect method and analyzed using the modified direct-duplicate method (Palka 1995) accounting for biases due to school size and other potential covariates, reactive movements (Palka and Hammond 2001), and g(0), the probability of detecting a group on the trackline. Aerial data were collected using the Hiby circle-back line-transect method (Hiby 1999) and analyzed accounting for g(0) and biases due to school size and other potential covariates (Palka 2005).

An abundance estimate of 30,196 (CV=0.537) common dolphins was derived from a shipboard survey of the U.S. Atlantic outer continental shelf and continental slope (water depths > 50 m) between Florida and Maryland (27.5 and 38° N latitude) conducted during June-August, 2004 (Table 1). The survey employed two independent visual teams searching with 25x bigeye binoculars. Survey effort was stratified to include increased effort along the continental shelf break and Gulf Stream front in the Mid-Atlantic. The survey included 5,659 km of trackline, and accomplished a total of 473 cetacean sightings. Sightings were most frequent in waters north of Cape Hatteras, North Carolina along the shelf break. Data were corrected for visibility bias (g(0)) and group-size bias and analyzed using line-transect distance analysis (Palka 1995; Buckland et al. 2001; Palka 2006).

An abundance estimate of 84,000 (CV=0.36) common dolphins was obtained from an aerial survey conducted in August 2006 which covered 10,676 km of trackline in the region from the 2000-m depth contour on the southern edge of Georges Bank to the upper Bay of Fundy and to the entrance of the Gulf of St. Lawrence (Table 1; Palka pers. comm.).

An abundance estimate of 53,625 (95% CI=35,179-81,773) common dolphins was generated from the Canadian Trans North Atlantic Sighting Survey (TNASS) in July-August 2007. This aerial survey covered area from northern Labrador to the Scotian Shelf, providing full coverage of the Atlantic Canadian coast. Estimates from this survey have not yet been corrected for availability and perception biases (Lawson and Gosselin 2009).

Please see appendix IV for a summary of abundance estimates, including earlier estimates and survey descriptions. As recommended in the GAMMS Workshop Report (Wade and Angliss 1997), if estimates are older than eight years PBR is undetermined.

<table>
<thead>
<tr>
<th>Month/Year</th>
<th>Area</th>
<th>N_best</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jun-Aug 2004</td>
<td>Maryland to Bay of Fundy</td>
<td>90,547</td>
<td>0.24</td>
</tr>
<tr>
<td>Jun-Aug 2004</td>
<td>Florida to Maryland</td>
<td>30,196</td>
<td>0.54</td>
</tr>
<tr>
<td>Jun-Aug 2004</td>
<td>Florida to Bay of Fundy (COMBINED)</td>
<td>120,743</td>
<td>0.23</td>
</tr>
<tr>
<td>Aug 2006</td>
<td>S. Gulf of Maine to upper Bay of Fundy to Gulf of St. Lawrence</td>
<td>84,000</td>
<td>0.36</td>
</tr>
<tr>
<td>July-Aug 2007</td>
<td>N. Labrador to Scotian Shelf</td>
<td>53,625</td>
<td>0.22</td>
</tr>
</tbody>
</table>

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normally distributed best abundance estimate. This is equivalent to the 20th percentile of the log-normal distribution.
as specified by Wade and Angliss (1997). The best estimate of abundance for common dolphins is 120,743 animals (CV=0.23) derived from the 2004 surveys. The minimum population estimate for the western North Atlantic common dolphin is 99,975.

Current Population Trend
A trend analysis has not been conducted for this species.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES
Current and maximum net productivity rates are unknown for this stock. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04. This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL
Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum productivity rate, and a “recovery” factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is 99,975 animals. The maximum productivity rate is 0.04, the default value for cetaceans. The “recovery” factor is 0.5, the default value for stocks of unknown status relative to optimum sustainable population (OSP), and because the CV of the average mortality estimate is less than 0.3 (Wade and Angliss 1997). PBR for the western North Atlantic stock of common dolphin is 1,000.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY
Total annual estimated average fishery-related mortality or serious injury to this stock during 2005-2009 was 164 (CV=0.12) common dolphins (Table 2).

Fishery information
Detailed fishery information is reported in Appendix III.

Earlier Interactions
For more details on the historical fishery interactions prior to 1999 see Waring et al. (2007).
In the Atlantic pelagic longline fishery between 1990 and 2007, 20 common dolphins were observed hooked and released alive.

The estimated fishery-related mortality of common dolphins attributable to the *Loligo* squid portion of the Southern New England/Mid-Atlantic Squid, Mackerel, Butterfly Trawl fisheries was 0 between 1997-1998 and 49 in 1999 (CV=0.97). After 1999 this fishery is included as a component of the mid-Atlantic bottom trawl fishery.

In the Atlantic mackerel portion of the Southern New England/Mid-Atlantic Squid, Mackerel, Butterfly Trawl fisheries, the estimated fishery-related mortality was 161 (CV=0.49) animals in 1997 and 0 in 1998 and 1999. However, the estimates in both the mackerel and *Loligo* fisheries should be viewed with caution due to the extremely low (<1%) observer coverage. After 1999 this fishery is included as a component of the mid-Atlantic bottom trawl and mid-Atlantic mid-water trawl fisheries.

There was one observed take in the Southern New England/mid-Atlantic Bottom Trawl fishery reported in 1997. The estimated fishery-related mortality for common dolphins attributable to this fishery was 93 (CV=1.06) in 1997 and 0 in 1998 and 1999. After 1999 this fishery is included as a component of the mid-Atlantic bottom trawl fishery.

Northeast Sink Gillnet
In 1990, an observer program was started by NMFS to investigate marine mammal takes in the Northeast sink gillnet fishery (Appendix III). Bycatch in the northern Gulf of Maine occurs primarily from June to September, while in the southern Gulf of Maine, bycatch occurs from January to May and September to December. Four common dolphins were observed taken in northeast sink gillnet fisheries in 2005, one in 2006, one in 2007, two in 2008 and 3 in 2009. The estimated annual fishery-related mortality and serious injury attributable to the northeast sink gillnet fishery (CV in parentheses) was 0 in 1995, 63 in 1996 (1.39), 0 in 1997, 0 in 1998, 146 in 1999 (0.97), 0 in 2000-2004, 5 (0.80) in 2005, 20 (1.05) in 2006, 11 (0.94) in 2007, 34 (0.77) in 2008, and 43 (0.77) in 2009. The 2005-2009 average annual mortality attributed to the northeast sink gillnet was 26 animals (CV=0.39).

A study of the effects of two different hanging ratios in the bottom set monkfish gillnet fishery on the bycatch of cetaceans and pinnipeds was conducted by NEFSC in 2009 and 2010 with 100% observer coverage. Commercial
fishing vessels from Massachusetts and New Jersey were used for the study which took place south of the Harbor Porpoise Take Reduction Team Cape Cod South Management Area (south of 40° 40’) in February, March and April. Eight research strings of fourteen nets each were fished, and 159 hauls were completed during the course of the study. Results showed that while a 0.33 mesh performed better at catching commercially important finfish than a 0.50 mesh, there was no statistical difference in cetacean or pinniped bycatch rates between the two hanging ratios. One common dolphin was caught in this study during 2009 (Schnaittacher 2011).

Mid-Atlantic Gillnet

One common dolphin was taken in an observed trip during 2006. Two common dolphins were observed taken in 1995, 1996 and 1997, and no takes were observed from 1998 to 2005, or in 2007 - 2009. Using the observed takes, the estimated annual mortality (CV in parentheses) attributed to this fishery was 7.4 in 1995 (0.69), 43 in 1996 (0.79), 16 in 1997 (0.53), and 0 in 1998-2005, 11 (1.03) in 2006, 0 in 2007 - 2009. Average annual estimated fishery-related mortality attributable to this fishery during 2005-2009 was 2 (CV=1.03) common dolphins (Table 2).

Northeast Bottom Trawl

This fishery is active in New England waters in all seasons. One common dolphin was observed taken in 2002, 3 in 2004, 5 in 2005, 1 in 2006, 3 in 2007, 1 in 2008, and 5 in 2009 (Table 2). The estimated annual fishery-related mortality and serious injury attributable to the northeast bottom trawl fishery (CV in parentheses) was 27 in 2000 (0.29), 30 (0.30) in 2001, 26 (0.29) in 2002, 26 (0.29) in 2003, 26 (0.29) in 2004, 32 (0.28) in 2005, 25 in 2006, 24 (0.28) in 2007, 17 (0.29) in 2008, and 19 (0.30) in 2009. The 2005-2009 average annual mortality attributed to the northeast bottom trawl was 23 animals (CV=0.13).

Mid-Atlantic Bottom Trawl

Three common dolphins were observed taken in mid-Atlantic bottom trawl fisheries in 2000, 2 in 2001, 9 in 2004, 15 in 2005, 14 in 2006, 0 in 2007, 1 in 2008, and 12 in 2009 (Table 2). The estimated annual fishery-related mortality and serious injury attributable to the northeast bottom trawl fishery (CV in parentheses) was 93 in 2000 (0.26), 103 (0.27) in 2001, 87 (0.27) in 2002, 99 (0.28) in 2003, 159 (0.30) in 2004, 141 (0.29) in 2005, 131 (0.28) in 2006, 66 (0.27) in 2007, 108 (0.28) in 2008, and 104 (0.29) in 2009. The 2005-2009 average annual mortality attributed to the mid-Atlantic bottom trawl was 110 animals (CV=0.13).

Mid-Atlantic Mid-water Trawl Fishery (Including Pair Trawl)

2007 was the first year a short-beaked common dolphin mortality had been observed in this fishery. This animal was taken in the same haul as an Atlantic white-sided dolphin. Due to small sample sizes, the bycatch rate model used the 2003 to September 2007 observed mid-water trawl data, including paired and single, and northeast and mid-Atlantic mid-water trawls (Palka, pers. com.). The model that best fit these data was a Poisson logistic regression model that included latitude and bottom depth as significant explanatory variables, where soak duration was the unit of effort. The resultant estimated annual fishery-related mortality and serious injury (CV in parentheses) was 3.2 (0.70) for 2007. The 2005-2009 average annual mortality attributed to the mid-Atlantic mid-water trawl was 1 (0.70) animal.

Pelagic Longline

In 2009 a common dolphin mortality was observed in the pelagic longline fishery, mid-Atlantic Bight fishing area (Garrison and Stokes 2010). The extrapolated estimate (CV in parentheses) for common dolphin bycatch attributed to this fishery was 8.5 (1.0) for 2009. The 2005-2009 average annual mortality was 1.7 (1.0).
Table 2. Summary of the incidental mortality of short-beaked common dolphins (*Delphinus delphis delphis*) by commercial fishery including the years sampled (Years), the type of data used (Data Type), the annual observer coverage (Observer Coverage), the mortalities recorded by on-board observers (Observed Mortality), the estimated annual mortality (Estimated Mortality), the estimated CV of the annual mortality (Estimated CVs) and the mean annual mortality (CV in parentheses).

<table>
<thead>
<tr>
<th>Fishery a</th>
<th>Years</th>
<th>Data Type b</th>
<th>Observer Coverage c</th>
<th>Observed Serious Injury</th>
<th>Observed Mortality</th>
<th>Estimated Serious Injury</th>
<th>Estimated Mortality</th>
<th>Estimated Combined Mortality</th>
<th>Estimated CVs</th>
<th>Mean Annual Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northeast Sink Gillnet c</td>
<td>05-09</td>
<td>Obs. Data, Trip Logbook, Allocated Dealer Data</td>
<td>.07, .04, .07, .05, .04</td>
<td>0, 0, 0, 0, 0</td>
<td>4, 1, 1, 2, 0</td>
<td>0, 0, 0, 0, 0</td>
<td>26, 20, 11, 34, 43</td>
<td>26, 20, 11, 34, 43</td>
<td>.8, .05, .04, .77, .77</td>
<td>26 (0.39)</td>
</tr>
<tr>
<td>Mid-Atlantic Gillnet</td>
<td>05-09</td>
<td>Obs. Data, Trip Logbook, Allocated Dealer Data</td>
<td>.02, .03, .04, .05, .03</td>
<td>0, 0, 0, 0, 0</td>
<td>0, 1, 0, 0, 0</td>
<td>0, 0, 0, 0, 0</td>
<td>0, 0, 0, 0, 0</td>
<td>0, 0, 1, 0, 0</td>
<td>0, 1.03, 0, 0, 0</td>
<td>2.2 (1.03)</td>
</tr>
<tr>
<td>Mid-Atlantic Midwater Trawl - Including Pair Trawl</td>
<td>05-09</td>
<td>Obs. Data Weighout Trip Logbook</td>
<td>.084, .089, .039, .13, .13</td>
<td>0, 0, 0, 0, 0</td>
<td>0, 0, 1, 0, 0</td>
<td>0, 0, 0, 0, 0</td>
<td>0, 0, 3.2, 0, 0</td>
<td>0, 0, 3.2, 0, 0</td>
<td>0, 0, 0, .70, 0, 0</td>
<td>0.6 (.70)</td>
</tr>
<tr>
<td>Northeast Bottom Trawl d</td>
<td>05-09</td>
<td>Obs. Data Dealer Data VTR Data</td>
<td>.12, .06, .08, .09</td>
<td>0, 0, 0, 0</td>
<td>5, 1, 3, 1, 0</td>
<td>0, 0, 0, 0</td>
<td>32, 25, 24, 17, 19</td>
<td>32, 25, 24, 17, 19</td>
<td>.28, .28, .28, .29, .30</td>
<td>23 (.13)</td>
</tr>
<tr>
<td>Mid-Atlantic Bottom Trawl e</td>
<td>05-09</td>
<td>Obs. Data Dealer</td>
<td>.03, .02, .03, .03, .05</td>
<td>0, 0, 0, 0</td>
<td>15, 14, 0, 1, 12</td>
<td>0, 0, 0, 0</td>
<td>141, 131, 66, 108, 104</td>
<td>141, 131, 66, 108, 104</td>
<td>.29, .28, .27, .28, .29</td>
<td>110 (.13)</td>
</tr>
<tr>
<td>Pelagic Longline f</td>
<td>05-09</td>
<td>Obs. Data Logbook</td>
<td>.06, .07, .07, .07, .10</td>
<td>0, 0, 0, 0</td>
<td>0, 0, 0, 0, 0</td>
<td>1.7 (1.0)</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>164</td>
</tr>
</tbody>
</table>
a. The fisheries listed in Table 2 reflect new definitions defined by the proposed List of Fisheries for 2005 (FR Vol. 69, No. 231, 2004). The 'North Atlantic bottom trawl' fishery is now referred to as the 'Northeast bottom trawl.' The Illex, Loligo and Mackerel fisheries are now part of the 'mid-Atlantic bottom trawl' and 'mid-Atlantic mid-water trawl' fisheries.

b. Observer data (Obs. Data), used to measure bycatch rates, are collected within the Northeast Fisheries Observer Program. NEFSC collects landings data (Dealer reported data) which are used as a measure of total landings and mandatory Vessel Trip Reports (VTR) (Trip Logbook) that are used to determine the spatial distribution of landings and fishing effort.

c. The observer coverages for the Northeast sink gillnet fishery are ratios based on tons of fish landed. North Atlantic bottom trawl mid-Atlantic bottom trawl, and mid-Atlantic mid-water trawl fishery coverages are ratios based on trips.

d. NE and MA bottom trawl mortality estimates reported for 2007 are a product of GLM estimated bycatch rates (utilizing observer data collected from 2000 to 2005) and 2007 effort. NE and MA bottom trawl mortality estimates reported for 2006 are a product of GLM estimated bycatch rates (utilizing observer data collected from 2000 to 2005) and 2006 effort. NE and MA bottom trawl mortality estimates reported for 2009 are a product of GLM estimated bycatch rates (utilizing observer data collected from 2000 to 2005) and 2009 effort (Rossman 2010). Because of this pooling, years with no observed mortality may still have a calculated estimate.

e. One common dolphin was incidentally caught as part of a 2009 NEFSC hanging ratio study to examine the impact of gillnet hanging ratio on harbor porpoise bycatch. This animal was included in the observed interactions and added to the total estimates, though this interaction and its associated fishing effort were not included in bycatch rate calculations.

CANADA

Between January 1993 and December 1994, 36 Spanish deep water trawlers, covering 74 fishing trips (4,726 fishing days and 14,211 sets), were observed in NAFO Fishing Area 3 (off the Grand Banks) (Lens 1997). A total of 47 incidental catches were recorded, which included one common dolphin. The incidental mortality rate for common dolphins was 0.007/set.

Other Mortality

Two common dolphins were reported as incidental mortalities in NEFSC Atlantic herring monitoring activities in 2004. In 2007, one common dolphin was reported taken in a NEFSC spring bottom trawl survey.

From 2005 to 2009, 428 common dolphins were reported stranded between Maine and Florida (Table 3). The total includes mass stranded common dolphins in Massachusetts during 2005 (a total of 43 in 4 separate events), 2006 (a total of 65 in 10 events), 2007 (a total of 23 in 5 separate events), 2008 (one event of 5 animals and one of 2 animals) and 2009 (a total of 26 in 6 events). Five of the 2005 Massachusetts stranded animals, 18 animals in 2006, 2 animals in 2007, 2 animals in 2008 and 5 animals in 2009 were released alive. Human interactions were indicated on one of the 2005 and one of the 2007 New York mortality records and one of the 2006 Virginia mortality records. In 2008, seven common dolphins had indications of human interactions, four which were fishery interactions. In 2009, six common dolphins had indications of human interaction, 3 of which were classified as fishery interactions. An Unusual Mortality Event (UME) was declared in 2008 due to a relatively high number of strandings between January and April 2008, from New Jersey to North Carolina. Twenty seven common dolphins were involved in this event (http://www.nmfs.noaa.gov/pr/health/marine/midatlantic2008.htm accessed 19 April 2011).

Four common dolphin strandings (6 individuals) were reported on Sable Island, Nova Scotia from 1996 to 1998 (Lucas and Hooker 1997; 2000). The Marine Animal Response Society of Nova Scotia reported one common dolphin stranded in 2008 and one in 2009 (Tonya Wimmer, pers. comm.).

<table>
<thead>
<tr>
<th>Table 3. Short-beaked common dolphin (Delphinus delphis delphis) reported strandings along the U.S. Atlantic coast, 2005-2009.</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATE</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>Maine</td>
</tr>
<tr>
<td>Massachusetts<sup>a</sup></td>
</tr>
<tr>
<td>Rhode Island<sup>b</sup></td>
</tr>
<tr>
<td>New York<sup>b,c</sup></td>
</tr>
<tr>
<td>New Jersey</td>
</tr>
<tr>
<td>Delaware<sup>c</sup></td>
</tr>
</tbody>
</table>

^a Includes 11 in 4 separate events, 15 in 4 separate events, and 1 in 1 separate event.

^b Includes 1 in 1 separate event.

^c Includes 1 in 1 separate event.
<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>2</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maryland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virginia^c</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>22</td>
<td>2</td>
<td>31</td>
</tr>
<tr>
<td>North Carolina^c</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>EZ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTALS</td>
<td>76</td>
<td>110</td>
<td>101</td>
<td>60</td>
<td>81</td>
<td>428</td>
</tr>
</tbody>
</table>

a. Massachusetts mass strandings (2005 - 7,5,25, and 4; 2006 - 2,2,3,4,3,9,10,14, and 14; 2007 - 2,4,6,2; 2008 - 5 and 2; 2009 - 2,3, 4,6,8).

b. One common dolphin was released alive from a pound net in 2006 in New York. Twenty (12 dead, 8 rescued; one of the mortalities classified as human interaction) animals involved in a mass stranding in Suffolk county in 2007. Seven animals involved in 2 mass stranding events in March 2009 (six euthanized, 1 died at site, 2 had signs of fishery interaction). In addition, in 2008 3 animals were relocated from the Nansomed River.

c. One 2005 mortality in New York reported as having human interaction and one in VA in 2006. Seven records with signs of human interaction in 2008 - 3 from Virginia, 1 from Massachusetts, one from North Carolina, and one from Delaware. Of these, 4 were fishery interactions. Six human interaction cases in 2009 (2 Massachusetts, 3 Rhode Island, 1 New York), 3 of which were classified as fishery interactions (2 in Rhode Island and one in Massachusetts).

Stranding data probably underestimate the extent of fishery-related mortality and serious injury because all of the marine mammals that die or are seriously injured may not wash ashore, nor will all of those that do wash ashore necessarily show signs of entanglement or other fishery-interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interaction.

STATUS OF STOCK

The status of short-beaked common dolphins, relative to OSP, in the U.S. Atlantic EEZ is unknown. The species is not listed as threatened or endangered under the Endangered Species Act. There are insufficient data to determine the population trends for this species. The total U.S. fishery-related mortality and serious injury for this stock is not less than 10% of the calculated PBR and, therefore, cannot be considered to be insignificant and approaching zero mortality and serious injury rate. The 2005-2009 average annual human-related mortality does not exceed PBR; therefore, this is not a strategic stock.

REFERENCES CITED

HARBOR PORPOISE (*Phocoena phocoena phocoena*):
Gulf of Maine/Bay of Fundy Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

This stock is found in U.S. and Canadian Atlantic waters. The distribution of harbor porpoises has been documented by sighting surveys, strandings and takes reported by NMFS observers in the Sea Sampling Program. During summer (July to September), harbor porpoises are concentrated in the northern Gulf of Maine and southern Bay of Fundy region, generally in waters less than 150 m deep (Gaskin 1977; Kraus *et al.* 1983; Palka 1995a; Palka 1995b), with a few sightings in the upper Bay of Fundy and on Georges Bank (Palka 2000). During fall (October-December) and spring (April-June), harbor porpoises are widely dispersed from New Jersey to Maine, with lower densities farther north and south. They are seen from the coastline to deep waters (>1800 m; Westgate *et al.* 1998), although the majority of the population is found over the continental shelf. During winter (January to March), intermediate densities of harbor porpoises can be found in waters off New Jersey to North Carolina, and lower densities are found in waters off New York to New Brunswick, Canada. There does not appear to be a temporally coordinated migration or a specific migratory route to and from the Bay of Fundy region. However, during the fall, several satellite tagged harbor porpoises did favor the waters around the 92-m isobath, which is consistent with observations of high rates of incidental catches in this depth range (Read and Westgate 1997). There were two stranding records from Florida during the 1980s (Smithsonian strandings database) and one in 2003 (NE Regional Office/NMFS strandings and entanglement database).

Gaskin (1984, 1992) proposed that there were four separate populations in the western North Atlantic: the Gulf of Maine/Bay of Fundy, Gulf of St. Lawrence, Newfoundland, and Greenland populations. Analyses involving mtDNA (Wang *et al.* 1996; Rosel *et al.* 1999a; 1999b), organochlorine contaminants (Westgate *et al.* 1997; Westgate and Tolley 1999), heavy metals (Johnston 1995), and life history parameters (Read and Hohn 1995) support Gaskin’s proposal. Genetic studies using mitochondrial DNA (Rosel *et al.* 1999a) and contaminant studies using total PCBs (Westgate and Tolley 1999) indicate that the Gulf of Maine/Bay of Fundy females were distinct from females from the other populations in the Northwest Atlantic. Gulf of Maine/Bay of Fundy males were distinct from Newfoundland and Greenland males, but not from Gulf of St. Lawrence males according to studies comparing mtDNA (Palka *et al.* 1996; Rosel *et al.* 1999a) and CHLORs, DDTs, PCBs and CHBs (Westgate and Tolley 1999). Nuclear microsatellite markers have also been applied to samples from these four populations, but this analysis failed to detect significant population sub-division in either sex (Rosel *et al.* 1999a). These patterns may be

Figure 1. Distribution of harbor porpoises from NEFSC and SEFSC shipboard and aerial surveys during the summers of 1998, 1999, 2002, 2004, 2006 and 2007. Isobaths are the 100-m, 1000-m, and 4000-m depth contours.
indicative of female philopatry coupled with dispersal of males. Both mitochondrial DNA and microsatellite analyses indicate that the Gulf of Maine/Bay of Fundy stock is not the sole contributor to the aggregation of porpoises found off the mid-Atlantic states during winter (Rosel et al. 1999a; Hiltunen 2006). Mixed-stock analyses using twelve microsatellite loci in both Bayesian and likelihood frameworks indicate that the Gulf of Maine/Bay of Fundy is the largest contributor (~60%), followed by Newfoundland (~25%) and then the Gulf of St. Lawrence (~12%), with Greenland making a small contribution (<3%). For Greenland, the lower confidence interval of the likelihood analysis includes zero. For the Bayesian analysis, the lower 2.5% posterior quantiles include zero for both Greenland and the Gulf of St. Lawrence. Intervals that reach zero provide the possibility that these populations contribute no animals to the mid-Atlantic aggregation. This report follows Gaskin's hypothesis on harbor porpoise stock structure in the western North Atlantic, where the Gulf of Maine and Bay of Fundy harbor porpoises are recognized as a single management stock separate from harbor porpoise populations in the Gulf of St. Lawrence, Newfoundland, and Greenland.

POPULATION SIZE

To estimate the population size of harbor porpoises in the Gulf of Maine/Bay of Fundy region, eight line-transect sighting surveys were conducted during the summers of 1991, 1992, 1995, 1999, 2002, 2004, 2006, and 2007. The best current abundance estimate of the Gulf of Maine/Bay of Fundy harbor porpoise stock is 89,054 (CV=0.47), based on the 2006 survey results (Table 1). This is because the 2006 estimate covered the largest portion of the harbor porpoise range.

Earlier abundance estimates

Please see Appendix IV for earlier abundance estimates. As recommended in the GAMMS Workshop Report (Wade and Angliss 1997), if estimates are older than eight years PBR is undetermined.

Recent surveys and abundance estimates

An abundance estimate of 51,520 (CV=0.65) harbor porpoises was obtained from a line-transect sighting survey conducted during 12 June to 4 August 2004 by a ship and plane that surveyed 6,180 km of trackline from the 100-m depth contour on the southern Georges Bank to the lower Bay of Fundy. The Scotian shelf south of Nova Scotia was not surveyed (Table 1). Shipboard data were collected using the two-independent-team line-transect method and analyzed using the modified direct-duplicate method (Palka 1995b) accounting for biases due to school size and other potential covariates, reactive movements (Palka and Hammond 2001), and \(g(0) \), the probability of detecting a group on the trackline. Aerial data were collected using the Hiby circle-back line-transect method (Hiby 1999) and analyzed accounting for \(g(0) \) and biases due to school size and other potential covariates (Palka 2005).

An abundance estimate of 89,054 (CV=0.47) harbor porpoises was generated from an aerial survey conducted in August 2006 which surveyed 10,676 km of trackline in the region from the 2000-m depth contour on the southern edge of Georges Bank to the upper Bay of Fundy and to the entrance of the Gulf of St. Lawrence. (Table 1; NMFS 2006).

An abundance estimate of 4,862 (CV=0.31) harbor porpoises from the Gulf of Maine/Bay of Fundy, Gulf of St. Lawrence, and Newfoundland stocks was generated from the Canadian Trans North Atlantic Sighting Survey (TNASS) in July-August 2007. This aerial survey covered area from northern Labrador to the Scotian Shelf, providing full coverage of the Atlantic Canadian coast. Estimates from this survey have not yet been corrected for availability and perception biases (Lawson and Gosselin 2009).

<table>
<thead>
<tr>
<th>Month/Year</th>
<th>Area</th>
<th>(N_{best})</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jun-Jul 2004</td>
<td>Gulf of Maine to lower Bay of Fundy</td>
<td>51,520</td>
<td>0.65</td>
</tr>
<tr>
<td>Aug 2006</td>
<td>S. Gulf of Maine to upper Bay of Fundy to Gulf of St. Lawrence</td>
<td>89,054</td>
<td>0.47</td>
</tr>
<tr>
<td>Jul-Aug 2007</td>
<td>Northern Labrador-Scotian Shelf*</td>
<td>4,862</td>
<td>0.31</td>
</tr>
</tbody>
</table>

a. Estimate includes harbor porpoises from the Gulf of Maine/Bay of Fundy, Gulf of St. Lawrence, and Newfoundland stocks, but is not corrected for availability and perception bias.
Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normally distributed best abundance estimate. This is equivalent to the 20th percentile of the log-normal distribution as specified by Wade and Angliss (1997). The best estimate of abundance for harbor porpoises is 89,054 (CV=0.47). The minimum population estimate for the Gulf of Maine/Bay of Fundy harbor porpoise is 60,970.

Current Population Trend

A trend analysis has not been conducted for this species.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Several attempts have been made to estimate potential population growth rates. Barlow and Boveng (1991), who used a re-scaled human life table, estimated the upper bound of the annual potential growth rate to be 9.4%. Woodley and Read (1991) used a re-scaled Himalayan tahr life table to estimate a likely annual growth rate of 4%. In an attempt to estimate a potential population growth rate that incorporates many of the uncertainties in survivorship and reproduction, Caswell et al. (1998) used a Monte Carlo method to calculate a probability distribution of growth rates. The median potential annual rate of increase was approximately 10%, with a 90% confidence interval of 3-15%. This analysis underscored the considerable uncertainty that exists regarding the potential rate of increase in this population. Moore and Read (2008) conducted a Bayesian population modeling analysis to estimate the potential population growth of harbor porpoise in the absence of bycatch mortality. Their method used fertility data, in combination with age-at-death data from stranded animals and animals taken in gillnets, and was applied under two scenarios to correct for possible data bias associated with observed bycatch of calves. Demographic parameter estimates were “model averaged” across these scenarios. The Bayesian posterior median estimate for potential natural growth rate was 0.046. This last value will be the one used for the purpose of this assessment.

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum productivity rate, and a “recovery” factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is 60,970. The maximum productivity rate is 0.046. The “recovery” factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP) is assumed to be 0.5 because the CV of the average mortality estimate is less than 0.3 (Wade and Angliss 1997). PBR for the Gulf of Maine/Bay of Fundy harbor porpoise is 701.

ANNUAL HUMAN-CAUSED MORTALITY

Data to estimate the mortality and serious injury of harbor porpoise come from U.S. and Canadian Sea Sampling Programs, from records of strandings in U.S. and Canadian waters, and from records in the Marine Mammal Authorization Program (MMAP). See Appendix III for details on U.S. fisheries and data sources. Estimates using Sea Sampling Program and MMAP data are discussed by fishery under the Fishery Information section (Table 2). Strandings records are discussed under the Unknown Fishery in the Fishery Information section (Table 3) and under the Other Mortality section (Table 3)

The total annual estimated average human-caused mortality is 927 harbor porpoises per year. This is derived from two components: 883 harbor porpoise per year (CV=0.14) from U.S. fisheries using observer and MMAP data, and 44 per year (unknown CV) from Canadian fisheries using observer data.

Fishery Information

Recently, Gulf of Maine/Bay of Fundy harbor porpoise takes have been documented in the U.S. Northeast sink gillnet, mid-Atlantic gillnet, and Northeast bottom trawl fisheries and in the Canadian Bay of Fundy groundfish sink gillnet and herring weir fisheries (Table 2). Detailed U.S. fishery information is reported in Appendix III.

Earlier Interactions

One harbor porpoise was observed taken in the Atlantic pelagic drift gillnet fishery during 1991-1998; the fishery ended in 1998. This observed bycatch was notable because it occurred in continental shelf edge waters adjacent to Cape Hatteras (Read et al. 1996). Estimated annual fishery-related mortality (CV in parentheses) attributable to this fishery was 0.7 in 1989 (7.00), 1.7 in 1990 (2.65), 0.7 in 1991 (1.00), 0.4 in 1992 (1.00), 1.5 in 1993 (0.34), 0 during 1994-1996 and 0 in 1998. The fishery was closed during 1997.
U.S.

Northeast Sink Gillnet

In 1990, an observer program was started by NMFS to investigate marine mammal takes in the Northeast sink gillnet fishery (Appendix III). Bycatch in the northern Gulf of Maine occurs primarily from June to September, while in the southern Gulf of Maine, bycatch occurs primarily from January to May and September to December. Estimated annual bycatch (CV in parentheses) from this fishery was 2,900 in 1990 (0.32), 2,000 in 1991 (0.35), 1,200 in 1992 (0.21), 1,400 in 1993 (0.18) (CUD 1994; Bravington and Bisack 1996), 2,100 in 1994 (0.18), 1,400 in 1995 (0.27) (Bisack 1997), 1,200 in 1996 (0.25), 782 in 1997 (0.22), 332 in 1998 (0.46), 270 in 1999 (0.28) (Rossman and Merrick 1999), 507 in 2000 (0.37), 53 (0.97) in 2001, 444 (0.37) in 2002, 592 (0.33) in 2003, 654 (0.36) in 2004, 630 (0.23) in 2005, 514 (0.31) in 2006, 395 (0.37) in 2007, 666 (0.48) in 2008, and 591 (0.23) in 2009 (Table 2). There appeared to be no evidence of differential mortality in U.S. or Canadian gillnet fisheries by age or sex in animals collected before 1994, although there was substantial inter-annual variation in the age and sex composition of the bycatch (Read and Hohn 1995). Using observer data collected during 1990-1998 and a logit regression model, females were 11 times more likely to be caught in the offshore southern Gulf of Maine region, males were more likely to be caught in the south Cape Cod region, and the overall proportion of males and females caught in a gillnet and brought back to land were not significantly different from 1:1 (Lamb 2000).

Scientific experiments that demonstrated the effectiveness of pingers in the Gulf of Maine were conducted during 1992 and 1993 (Kraus et al. 1997). After the scientific experiments, experimental fisheries were allowed in the general fishery during 1994 to 1997 in various parts of the Gulf of Maine and south of Cape Cod areas. During these experimental fisheries, bycatch rates of harbor porpoises in pingered nets were less than in non-pingered nets.

A study on the effects of two hanging ratios in the bottom-set monkfish gillnet fishery on the bycatch of cetaceans and pinnipeds was conducted by NEFSC in 2009 and 2010 with 100% observer coverage. Commercial fishing vessels from Massachusetts and New Jersey were used for the study, which took place south of the Harbor Porpoise Take Reduction Team Cape Cod South Management Area (south of 40° 40’) in February, March and April. Eight research strings of fourteen nets each were fished and, 159 hauls were completed during the course of the study. Results showed that while a mesh hung with a 0.33 ratio performed better at catching commercially important finfish than mesh hung with a 0.50 ratio, there was no statistical difference in cetacean or pinniped bycatch rates between the two hanging ratios. Twelve harbor porpoises were caught in this project during 2009 (Schnaittacher 2011).

Average estimated harbor porpoise mortality and serious injury in the Northeast sink gillnet fishery during 1994-1998, before the Take Reduction Plan, was 1,163 (0.11). The average annual harbor porpoise mortality and serious injury in the Northeast sink gillnet fishery from 2005 to 2009 was 559 (0.16) (Table 2).

Mid-Atlantic Gillnet

Before an observer program was in place for this fishery, Polacheck et al. (1995) reported one harbor porpoise incidentally taken in shad nets in the York River, Virginia. In July 1993 an observer program was initiated in the mid-Atlantic gillnet fishery by the NEFSC Sea Sampling program (Appendix III). Documented bycatch after 1995 was from December to May. Bycatch estimates were calculated using methods similar to those used for bycatch estimates in the Northeast sink gillnet fishery (Bravington and Bisack 1996; Bisack 1997). The estimated annual mortality (CV in parentheses) attributed to this fishery was 103 (0.57) for 1995, 311 (0.31) for 1996, 572 (0.35) for 1997, 446 (0.36) for 1998, 53 (0.49) for 1999, 21 (0.76) for 2000, 26 (0.95) for 2001, unknown in 2002, 76 (1.13) in 2003, 137 (0.91) in 2004, 470 (0.51) in 2005, 511 (0.32) in 2006, 58 (1.03) in 2007, 350 (0.75) in 2008, and 201 (0.55) in 2009. Annual average estimated harbor porpoise mortality and serious injury from the mid-Atlantic gillnet fishery during 1995 to 1998, before the Take Reduction Plan, was 358 (CV=0.20). The average annual harbor porpoise mortality and serious injury in the mid-Atlantic gillnet fishery from 2005 to 2009 was 318 (0.26) (Table 2).

Northeast Bottom Trawl

This fishery is active in New England waters in all seasons. Twenty harbor porpoise mortalities were observed in the Northeast bottom trawl fishery between 1989 and 2008, but many of these are not attributable to this fishery. Decomposed animals are presumed to have been dead prior to being taken by the trawl. One fresh dead take was observed in the Northeast bottom trawl fishery in 2003, 4 in 2005, 1 in 2006, and 1 in 2008. Estimates have not been generated for this fishery. To estimate bycatch in this fishery, observer and mandatory vessel trip report data from the years 2005 through 2009 were used in a stratified ratio-estimator. The estimated annual mortality (CV in parentheses) attributed to this fishery was 7.2 (0.48) for 2005, 6.5 (0.49) for 2006, 5.6 (0.46) for 2007, 5.3 (0.47) for 2008, and 5.1 (0.50) for 2009. Annual average estimated harbor porpoise mortality and serious injury from the
northeast bottom trawl fishery from 2005 to 2009 was 6.0 (0.22) (Table 2).

Unknown Fishery

The strandings and entanglement database, maintained by the New England Aquarium and the Northeast Regional Office/NMFS, reported 228, 27, 113, 79, 122, 118, 175, 73, 79, 58, and 65 stranded harbor porpoises on U.S. beaches during 1999 to 2009, respectively (see Other Mortality section for more details). Of these, it was determined that the cause of death of 19, 1, 3, 2, 9, and 6 stranded harbor porpoises in 1999 to 2004, respectively, were due to unknown fisheries and these animals were observed stranded in areas and times for which fisheries observer program data were not available offshore of the stranding sites, indicating that these stranded animals were not included in the above mortality estimates.

CANADA

Hooker *et al.* (1997) summarized bycatch data from a Canadian fisheries observer program that placed observers on all foreign fishing vessels operating in Canadian waters, on 25-40% of large Canadian fishing vessels (greater than 100 feet long), and on approximately 5% of smaller Canadian fishing vessels. No harbor porpoises were observed taken.

Bay of Fundy Sink Gillnet

During the early 1980s, harbor porpoise bycatch in the Bay of Fundy sink gillnet fishery, based on casual observations and discussions with fishermen, was thought to be low. The estimated harbor porpoise bycatch in 1986 was 94-116 and in 1989 it was 130 (Trippel *et al.* 1996). The Canadian gillnet fishery occurs mostly in the western portion of the Bay of Fundy during the summer and early autumn months, when the density of harbor porpoises is highest. Polacheck (1989) reported there were 19 gillnetters active in 1986, 28 active in 1987, and 21 in 1988.

More recently, an observer program implemented in the summer of 1993 provided a total bycatch estimate of 424 harbor porpoises (± 1 SE: 200-648) from 62 observed trips, (approximately 11.3% coverage of the Bay of Fundy trips) (Trippel *et al.* 1996). During 1994, the observer program was expanded to cover 49% of the gillnet trips (171 observed trips). The bycatch was estimated to be 101 harbor porpoises (95% confidence limit: 80-122), and the fishing fleet consisted of 28 vessels (Trippel *et al.* 1996). During 1995, due to groundfish quotas being exceeded, the gillnet fishery was closed from July 21 to August 31. During the open fishing period of 1995, 89% of the trips were observed, all in the Swallowtail region. Approximately 30% of these observed trips used pinpered nets. The estimated bycatch was 87 harbor porpoises (Trippel *et al.* 1996). No confidence interval was computed due to lack of coverage in the Wolves fishing grounds. During 1996, the Canadian gillnet fishery was closed during 20-31 July and 16-31 August due to groundfish quotas. From the 107 monitored trips, the bycatch in 1996 was estimated to be 20 harbor porpoises (DFO 1998; Trippel *et al.* 1999). Trippel *et al.* (1999) estimated that during 1996, gillnets equipped with acoustic alarms reduced harbor porpoise bycatch rates by 68% over nets without alarms in the Swallowtail area of the lower Bay of Fundy. During 1997, the fishery was closed to the majority of the gillnet fleet during 18-31 July and 16-31 August, due to groundfish quotas. In addition a time-area closure to reduce porpoise bycatch in the Swallowtail area occurred during 1-7 September. From the 75 monitored trips, 19 harbor porpoises were observed taken. After accounting for total fishing effort, the estimated bycatch in 1997 was 43 animals (DFO 1998). Trippel *et al.* (1999) estimated that during 1997, gillnets equipped with acoustic alarms reduced harbor porpoise bycatch rates by 85% over nets without alarms in the Swallowtail area of the lower Bay of Fundy. The number of monitored trips (and observed harbor porpoise mortalities) were 111 (5) for 1998, 93 (3) for 1999, 194 (5) for 2000, and 285 (39) for 2001. The estimated annual mortality estimates were 38 for 1998, 32 for 1999, 28 for 2000, and 73 for 2001 (Trippel and Shepherd 2004). Estimates of variance are not available.

There has been no observer program during the summer since 2002 in the Bay of Fundy region, but the fishery was active. Bycatch for these years is unknown. The annual average of most recent five years with available data (1997-2001) was 43 animals, so this value is used to estimate the annual average for more recent years.

Herring Weirs

Harbor porpoises are taken in Canadian herring weirs, but there have been no recent efforts to observe takes in the U.S. component of this fishery. Smith *et al.* (1983) estimated that in the 1980s approximately 70 harbor porpoises became trapped annually and, on average, 27 died annually. In 1990, at least 43 harbor porpoises were trapped in Bay of Fundy weirs (Read *et al.* 1994). In 1993, after a cooperative program between fishermen and Canadian biologists was initiated, over 100 harbor porpoises were released alive (Read *et al.* 1994). Between 1992 and 1994, this cooperative program resulted in the live release of 206 of 263 harbor porpoises caught in herring weirs. Mortalities (and releases) were 11 (50) in 1992, 33 (113) in 1993, and 13 (43) in 1994 (Neimanis *et al.* 1995).
Since that time, additional 751 harbor porpoises have been documented in Canadian herring weirs of which 728 were released or escaped, 42 died, and 29 had an unknown status. Mortalities (and releases, and unknowns) were 5 (60, 0) in 1995; 2 (4, 0) in 1996; 2 (24, 0) in 1997; 2 (26, 0) in 1998; 3 (89, 0) in 1999; 0 (13, 0) in 2000 (A. Read, pers. comm), 14 (296, 0) in 2001, 3 (46, 4) in 2002, 1 (26, 3) in 2003, 4 (53, 2) in 2004; 0 (19, 5) in 2005; 2 (14, 0) in 2006; 3 (9, 3) in 2007, 0 (8, 6) in 2008, and 0 (3, 4) in 2009 (Neimanis et al. 2004; H. Koopman and A. Westgate, pers. comm.).

Average estimated harbor porpoise mortality in the Canadian herring weir fishery during 2005-2009 was 1.0 (Table 2). An estimate of variance is not possible.

Gulf of St. Lawrence gillnet

This fishery interacts with the Gulf of St. Lawrence harbor porpoise stock, not the Gulf of Maine/Bay of Fundy harbor porpoise stock. Using questionnaires to fishermen, Lesage et al. (2006) determined a total of 2215 (95% CI 1151-3662) and 2394 (95% CI 1440-3348) harbor porpoises were taken in 2000 and 2001, respectively. The largest takes were in July and August around Miscou and the North Shore of the Gulf of St. Lawrence. According to the returned questionnaires, the fish species most usually associated with incidental takes of harbor porpoises include Atlantic cod, herring and mackerel. An at-sea observer program was also conducted during 2001 and 2002. However, due to low observer coverage that was not representative of the fishing effort, Lesage et al. (2006) concluded that resulting bycatch estimates were unreliable.

Newfoundland gillnet

This fishery interacts with the Newfoundland harbor porpoise stock, not the Gulf of Maine/Bay of Fundy harbor porpoise stock. Estimates of incidental catch of small cetaceans, where the vast majority are likely harbor porpoises, was 862 in 2001, 1,428 in 2002, and 2,228 in 2003 for the Newfoundland nearshore cod and Greenland halibut fisheries, and the Newfoundland offshore fisheries in lumpfish, herring, white hake, monkfish and skate (Benjamins et al. 2007).

<p>| Table 2. From observer program data, summary of the incidental mortality of Gulf of Maine/Bay of Fundy harbor porpoise (Phocoena phocoena phocoena) by commercial fishery including the years sampled (Years), the type of data used (Data Type), the annual observer coverage (Observer Coverage), the mortalities recorded by on-board observers (Observed Mortality), the estimated annual mortality (Estimated Mortality), the estimated CV of the annual mortality (Estimated CVs) and the mean annual mortality (CV in parentheses). |
|---|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|</p>
<table>
<thead>
<tr>
<th>Fishery</th>
<th>Years</th>
<th>Data Type</th>
<th>Observer Coverage</th>
<th>Observed Mortality</th>
<th>Estimated Mortality</th>
<th>Estimated CVs</th>
<th>Mean Annual Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northeast Sink Gillnet a,b</td>
<td>05-09</td>
<td>Obs. Data,</td>
<td>.07 ,.04,.07,</td>
<td>51, 26, 35, 30, 45</td>
<td>630, 514, 395, 666,</td>
<td>.23 ,.31,.37,.48,</td>
<td>559 (0.16)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Weighout,</td>
<td>.05,.04</td>
<td></td>
<td>591</td>
<td>.23</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trip Logbook</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mid-Atlantic Gillnet</td>
<td>05-09</td>
<td>Obs. Data</td>
<td>.03 ,.04,.06,</td>
<td>15, 20, 1, 9, 7</td>
<td>470, 511, 58, 350, 201</td>
<td>.51 ,.32,.103,.75,.55</td>
<td>318 (0.26)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Weighout</td>
<td>.03,.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northeast bottom trawl f</td>
<td>05-09</td>
<td>Obs. Data</td>
<td>.12 ,.06,.06,</td>
<td>4, 1, 0, 1, 0</td>
<td>7.18, 6.48, 5.59, 5.26, 5.10</td>
<td>.48 ,.49,.46,.47,.50</td>
<td>6 (0.22) f</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Weighout</td>
<td>.08,.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S. TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005-2009</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>883 (0.14)</td>
</tr>
<tr>
<td>U.S. TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CANADA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bay of Fundy Sink Gillnet g</td>
<td>1997-</td>
<td>Can. Trips</td>
<td>unk</td>
<td>19, 5, 3, 5, 39</td>
<td>43, 38, 32, 28, 73</td>
<td>unk</td>
<td>43 (unk)</td>
</tr>
<tr>
<td></td>
<td>2001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herring Weir f</td>
<td>05-09</td>
<td>Coop. Data</td>
<td>unk</td>
<td>0, 2, 3, 0, 0</td>
<td>0, 2, 3, 0, 0</td>
<td>NA</td>
<td>1.0 (unk)</td>
</tr>
<tr>
<td>CANADIAN TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>44 (unk)</td>
</tr>
</tbody>
</table>
NA = Not available.
a. Observer data (Obs. Data) are used to measure bycatch rates; the U.S. data are collected by the Northeast Fisheries Science Center (NEFSC) Sea Sampling Program, the Canadian data are collected by DFO. NEFSC collects Weighout (Weighout) landings data that are used as a measure of total effort for the U.S. gillnet fisheries. The Canadian DFO catch and effort statistical system collected the total number of trips fished by the Canadians (Can. Trips), which was the measure of total effort for the Canadian groundfish gillnet fishery. Mandatory vessel trip report (VTR) (Trip Logbook) data are used to determine the spatial distribution of fishing effort in the Northeast sink gillnet fishery. Observed mortalities from herring weirs are collected by a cooperative program between fishermen and Canadian biologists (Coop. Data).
b. Observer coverage for the U.S. Northeast and mid-Atlantic coastal gillnet fisheries, is based on tons of fish landed.
c. During 2002-2009 in the Northeast gillnet fishery, harbor porpoises were taken on pingered strings within strata that required pingers but that stratum also had observed strings without pingers. For estimates made during 1998 and after, a weighted bycatch rate was applied to effort from both pingered and non-pingered hauls within a stratum. The weighted bycatch rate was:

\[
\text{weighted bycatch rate} = \frac{\text{number of porpoises}}{\text{total effort}}
\]

There were 10, 33, 44, 0, 11, 0, 2, 8, 6, 2, 26, 2, 4, 12, 2, 9, 6 and 11 observed harbor porpoise takes on pinger trips from 1992 to 2009, respectively, that were included in the observed mortality column. In addition, there were 9, 0, 2, 1, 1, 4, 0, 1, 7, 21, 33, 24, 7, 13, and 20 observed harbor porpoise takes in 1995 to 2009, respectively, on trips dedicated to fish sampling versus dedicated to watching for marine mammals; these were also included in the observed mortality column (Bisack 1997).
d. There were 255 licenses for herring weirs in the Canadian Bay of Fundy region.
e. Data provided by H. Koopman pers. comm.
f. The Canadian gillnet fishery was not observed during 2002 and afterwards, but the fishery is still active; thus, the bycatch estimate is estimated using past averages.
g. Fisheries observer data from the years 2005 through 2009 were pooled and bycatch rates for harbor porpoise were estimated using a stratified ratio-estimator. Estimated bycatch rates from the pooled fisheries observer data were expanded by annual (2005-2009) fisheries data collected from mandatory vessel trip reports.
h. Twelve harbor porpoises were incidentally caught as part of a 2009 NEFSC hanging ratio study to examine the impact of gillnet hanging ratio on harbor porpoise bycatch. These animals were included in the observed interactions and added to the total estimates, though these interactions and their associated fishing effort were not included in bycatch rate calculations.

Other Mortality
U.S.

There is evidence that harbor porpoises were harvested by natives in Maine and Canada before the 1960s, and the meat was used for human consumption, oil, and fish bait (NMFS 1992). The extent of these past harvests is unknown, though it is believed to have been small. Up until the early 1980s, small kills by native hunters (Passamaquoddy Indians) were reported. In recent years it was believed to have nearly stopped (Polacheck 1989) until media reports in September 1997 depicted a Passamaquoddy tribe member dressing out a harbor porpoise. Further articles describing use of porpoise products for food and other purposes were timed to coincide with ongoing legal action in state court.

During 2005, 175 harbor porpoises were reported stranded on Atlantic U.S. beaches. Although 24 animals were classified as having signs of human interaction, and of those 24, 7 showed signs of fishery interaction, in no case was cause of death directly attributable to these interactions. An Unusual Mortality Event was declared for harbor porpoise in North Carolina, as there were 38 stranded in that state between 1 January and 28 March 2005. Most of these were young of the year, and histopathological examinations of 6 of these animals showed no systemic diseases or common symptoms other than emaciation (MMC 2006).

During 2006, 73 harbor porpoises were reported stranded on Atlantic U.S. beaches. Eight of these were reported as having signs of human interaction, but in no case was cause of death directly attributable to these interactions. In
fact, in three cases the human interaction was post-mortem. One of the human interaction mortalities was classified as a fishery interaction (with no further detail), one as a boat collision, and one was involved in an oil spill.

During 2007, 79 harbor porpoises were reported stranded on Atlantic U.S. beaches. Of these, six were reported as having signs of human interaction. One of these was classified as a fishery interaction, and one had signs of propeller wounds, although the marks appeared to have been made post-mortem.

During 2008, 58 harbor porpoises were reported stranded on Atlantic U.S. beaches. Of these, four were reported as having signs of human interaction. One of these was classified as a fishery interaction.

During 2009, 65 harbor porpoises were reported stranded on Atlantic U.S. beaches. Of these, five stranding mortalities were reported as having signs of human interaction, all of which were fishery interactions.

Stranding data probably underestimate the extent of fishery-related mortality and serious injury because all of the marine mammals that die or are seriously injured may not wash ashore, nor will all of those that do wash ashore necessarily show signs of entanglement or other fishery-interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interaction.

Table 3. Harbor Porpoise (*Phocoena phocoena phocoena*) reported strandings along the U.S. Atlantic coast and Nova Scotia, 2005-2009.

<table>
<thead>
<tr>
<th>Area</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maine</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>39</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Massachusettsa</td>
<td>55</td>
<td>23</td>
<td>22</td>
<td>25</td>
<td>19</td>
<td>144</td>
</tr>
<tr>
<td>Rhode Islandb</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>Connecticut</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>New Yorkc</td>
<td>15</td>
<td>11</td>
<td>10</td>
<td>3</td>
<td>9</td>
<td>48</td>
</tr>
<tr>
<td>New Jerseyd</td>
<td>17</td>
<td>6</td>
<td>5</td>
<td>8</td>
<td>4</td>
<td>40</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Delaware</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Maryland</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>Virginie</td>
<td>22</td>
<td>9</td>
<td>8</td>
<td>6</td>
<td>8</td>
<td>53</td>
</tr>
<tr>
<td>North Carolinad</td>
<td>42</td>
<td>6</td>
<td>20</td>
<td>6</td>
<td>14</td>
<td>88</td>
</tr>
<tr>
<td>Florida</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL U.S.</td>
<td>175</td>
<td>73</td>
<td>79</td>
<td>58</td>
<td>65</td>
<td>450</td>
</tr>
<tr>
<td>Nova Scotaf</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>25</td>
</tr>
<tr>
<td>Newfoundland and New Brunswickg</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>GRAND TOTAL</td>
<td>185</td>
<td>77</td>
<td>84</td>
<td>68</td>
<td>73</td>
<td>487</td>
</tr>
</tbody>
</table>

a. In Massachusetts, during 2005, 2 animals were relocated and released. In 2006 one stranding record was of an emaciated calf swimming in shallow water, but capture attempts were unsuccessful. One animal was taken to a rehab facility in 2007 and one in 2008.

b. In Rhode Island one animal stranded alive in 2006 and was taken to rehab.

c. Includes one live animal in 2006 in New York.

d. In North Carolina, one animal was relocated and released in 2005, one animal was taken to rehab in 2006, and one animal immediately released in 2008.

e. In 2009, 3 harbor porpoises were classified as fishery interactions, 2 in VA and 1 in NJ.

f. Two of the 2009 animals were released alive.

g. One of the 2009 animals was released alive and the other was entangled dead in a capelin trap mooring.
CANADA

The Nova Scotia Stranding Network documented whales and dolphins stranded between 1991 and 1996 on the coast of Nova Scotia (Hooker et al. 1997). Researchers with the Canadian Department of Fisheries and Oceans documented strandings on the beaches of Sable Island during 1970 to 1998 (Lucas and Hooker 2000). Sable Island is approximately 170 km southeast of mainland Nova Scotia. On the mainland of Nova Scotia, a total of 8 stranded harbor porpoises were recorded between 1991 and 1996: 1 in May 1991, 2 in 1993 (July and September), 1 in August 1994 (released alive), 1 in August 1994, and 3 in 1996 (March, April, and July (released alive)). On Sable Island, 8 stranded dead harbor porpoises were documented, most in January and February; 1 in May 1991, 1 in January 1992, 1 in January 1993, 3 in February 1997, 1 in May 1997, and 1 in June 1997. The two strandings during May-June 1997 were neonates (> 80 cm). The harbor porpoises that stranded in the winter (January-February) were on Sable Island, those in the spring (March to June) were in the Bay of Fundy (2 in Minas Basin and 1 near Yarmouth) and on Sable Island (2), and those in the summer (July to September) were scattered along the coast from the Bay of Fundy to Halifax.

Whales and dolphins stranded between 1997 and 2009 on the coast of Nova Scotia were recorded by the Marine Animal Response Society and the Nova Scotia Stranding Network, including 3 harbor porpoises stranded in 1997 (1 in April, 1 in June and 1 in July), 2 stranded in June 1998, 1 in March 1999, 3 in 2000 (1 in February, 1 in June, and 1 in August); 2 in 2001 (1 in July and 1 in December), 5 in 2002 (3 in July (1 released alive), 1 in August, and 1 in September (released alive)), 3 in 2003 (2 in May (1 was released alive) and 1 in June (disentangled and released alive)), 4 in 2004 (1 in April, 1 in May, 1 in July (released alive) and 1 in November), 6 in 2005 (1 in April (released alive), 1 in May, 3 in June and 1 in July), 4 in 2006 (1 in June, 1 in August, 1 in September, and 1 in December), 4 in 2007, 6 in 2008, and 6 in 2009 (2 released alive); Table 3).

Five dead stranded harbor porpoises were reported in 2005 by the Newfoundland and Labrador Whale Release and Strandings Program, 1 in 2007 and 4 in 2008, and 2 in 2009 (one dead entangled and one live release) (Ledwell and Huntington 2004; 2006; 2007; 2008; 2009; 2010).

USA management measures taken to reduce bycatch

A ruling to reduce harbor porpoise bycatch in U.S. Atlantic gillnets was published in the Federal Register (63 FR 66464) on 02 December 1998 and became effective 01 January 1999. The Gulf of Maine portion of the Harbor Porpoise Take Reduction Plan (HPTRP) pertains to all fishing with sink gillnets and other gillnets capable of catching regulated groundfish in New England waters, from Maine through Rhode Island. This portion of the rule includes time and area closures, some of which are complete closures; others are closed to gillnet fishing unless pingers are used in the prescribed manner. Also, the rule requires those who intend to fish to attend training and certification sessions on the use of pingers. The mid-Atlantic portion of the plan pertains to waters west of 72°30'W longitude to the mid-Atlantic shoreline from New York to North Carolina. This portion of the rule includes time and area closures, some of which are complete closures; others are closed to gillnet fishing unless the gear meets certain restrictions. The MMPA mandates that the take reduction team that developed the above take reduction measures periodically meet to evaluate the effectiveness of the plan and modify it as necessary. The Harbor Porpoise Take Reduction Team was reconvened in December 2007 to discuss updated harbor porpoise abundance and bycatch information. The Team recommended modifications to the plan to further reduce harbor porpoise bycatch in commercial fisheries. As a result, the HPTRP was amended on 19 February 2010 (75 FR 7383) to expand management areas and seasons in which pingers are required, as well as to increase efforts to monitor and enforce the plan. In addition, the New England portion of the HPTRP now includes consequence closure areas as a management measure strategy. These areas with historically high bycatch rates will close seasonally only if bycatch rates over two consecutive management seasons exceed a specified bycatch rate. This management strategy is intended to reduce harbor porpoise bycatch and to increase compliance with HPTRP regulations. Once triggered, these areas would remain in effect until bycatch levels achieve the zero mortality rate goal (ZMRG) or until new management measures are implemented in these areas.

STATUS OF STOCK

This is a strategic stock because average annual human-related mortality and serious injury exceeds PBR. The total U.S. fishery-related mortality and serious injury for this stock is not less than 10% of the calculated PBR and, therefore, cannot be considered to be insignificant and approaching zero mortality and serious injury rate. The status of harbor porpoises, relative to OSP, in the U.S. Atlantic EEZ is unknown. Population trends for this species have
not been investigated. On 7 January 1993, NMFS proposed listing the Gulf of Maine harbor porpoise as threatened under the Endangered Species Act (NMFS 1993). On 5 January 1999, NMFS determined the proposed listing was not warranted (NMFS 1999). On 2 August 2001, NMFS made available a review of the biological status of the Gulf of Maine/Bay of Fundy harbor porpoise population. The determination was made that listing under the Endangered Species Act (ESA) was not warranted, and this stock was removed from the ESA candidate species list (NMFS 2001).

REFERENCES CITED

DFO 1998. Harbour porpoise bycatch in the lower Bay of Fundy gillnet fishery. DFO Maritimes Regional Fisheries Status Report 98/7E. Available from Department of Fisheries and Oceans, Resource management Branch, P.O. Box 550, Halifax, NS B3J 2S7, Canada.

Ledwell, W. and J. Huntington 2004. Marine animal entrapments in fishing gear in Newfoundland and Labrador and

Ledwell, W. and J. Huntington 2009. Incidental entrapments in fishing gear and strandings reported to the whale release and strandings group in Newfoundland and Labrador and a summary of the Whale Release and Strandings Program during 2008. A report to the Department of Fisheries and Oceans Canada, St. John's, Newfoundland, Canada. 29 pp.

Ledwell, W. and J. Huntington 2010. Incidental entrapments in fishing gear and strandings reported to the whale release and strandings group in Newfoundland and Labrador and a summary of the Whale Release and Strandings Group in Newfoundland and Labrador and a summary of the whale release and strandings program during 2009-2010. A report to the Department of Fisheries and Oceans Canada, St. John's, Newfoundland, Canada. 23 pp.

HARBOR SEAL (Phoca vitulina concolor): Western North Atlantic Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

The harbor seal is found in all nearshore waters of the North Atlantic and North Pacific Oceans and adjoining seas above about 30°N (Burns 2009). In the western North Atlantic, they are distributed from the eastern Canadian Arctic and Greenland south to southern New England and New York, and occasionally to the Carolinas (Mansfield 1967; Boulva and McLaren 1979; Katona et al. 1993; Gilbert and Guldager 1998; Baird 2001). Stanley et al. (1996) examined worldwide patterns in harbor seal mitochondrial DNA, which indicate that western and eastern North Atlantic harbor seal populations are highly differentiated. Further, they suggested that harbor seal females are only regionally philopatric, thus population or management units are on the scale of a few hundred kilometers. Although the stock structure of the western North Atlantic population is unknown, it is thought that harbor seals found along the eastern U.S. and Canadian coasts represent one population (Temte et al. 1991). In U.S. waters, breeding and pupping normally occur in waters north of the New Hampshire/Maine border, although breeding occurred as far south as Cape Cod in the early part of the twentieth century (Temte et al. 1991; Katona et al. 1993).

Harbor seals are year-round inhabitants of the coastal waters of eastern Canada and Maine (Katona et al. 1993), and occur seasonally along the southern New England to New Jersey coasts from September through late May (Schneider and Payne 1983; Barlas 1999; Schroeder 2000; deHart 2002). Scattered sightings and strandings have been recorded as far south as Florida (NMFS unpublished data). A general southward movement from the Bay of Fundy to southern New England waters occurs in autumn and early winter (Rosenfeld et al. 1988; Whitman and Payne 1990; Barlas 1999; Jacobs and Terhune 2000). A northward movement from southern New England to Maine and eastern Canada occurs prior to the pupping season, which takes place from mid-May through June along the Maine Coast (Richardson 1976; Wilson 1978; Whitman and Payne 1990; Kenney 1994; deHart 2002). While earlier research identified no pupping areas in southern New England (Payne and Schneider 1984; Barlas 1999), more recent information suggests that some pupping is occurring at high-use haulout sites off Manomet, Massachusetts (B. Rubenstein, New England Aquarium, pers. comm.). The overall geographic range throughout coastal New England has not changed significantly during the last century (Payne and Selzer 1989).

Prior to the spring 2001 live-capture and radio-tagging of adult harbor seals, it was believed that the majority of seals moving into southern New England and mid-Atlantic waters were subadults and juveniles (Whitman and Payne 1990; Katona et al. 1993). The 2001 study established that adult animals also made this migration. Seventy-five percent (9/12) of the seals tagged in March in Chatham Harbor were detected at least once during the May/June 2001 abundance survey along the Maine coast (Gilbert et al. 2005; Waring et al. 2006).
POPULATION SIZE
Since passage of the MMPA in 1972, the observed count of seals along the New England coast has been increasing. Coast-wide aerial surveys along the Maine coast were conducted in May/June 1981, 1986, 1993, 1997, and 2001 during pupping (Gilbert and Stein 1981; Gilbert and Wynne 1983, 1984; Kenney 1994; Gilbert and Guldager 1998; Gilbert et al. 2005). However, estimates older than eight years are deemed unreliable (Wade and Angliss 1997), and should not be used for PBR determinations. Therefore, there is no current abundance estimate for harbor seals. The 2001 survey, conducted in May/June, included replicate surveys and radio tagged seals to obtain a correction factor for animals not hauled out. The corrected estimate (pups in parenthesis) for 2001 was 99,340 (23,722). The 2001 observed count of 38,014 is 28.7% greater than the 1997 count. Increased abundance of seals in the Northeast region has also been documented during aerial and boat surveys of overwintering haul-out sites from the Maine/New Hampshire border to eastern Long Island and New Jersey (Payne and Selzer 1989; Rough 1995; Barlas 1999; Schroeder 2000; deHart 2002).

Canadian scientists counted 3,500 harbor seals during an August 1992 aerial survey in the Bay of Fundy (Stobo and Fowler 1994), but noted that the survey was not designed to obtain a population estimate. The Sable Island population was the largest in eastern Canada in the late 1980s, however recently the number has drastically declined (Baird 2001). Similarly, pup production declined on Sable Island from 600 in 1989 to around a dozen pups or fewer by 2002 (Baird 2001; Bowen et al. 2003). A decline in the number of juveniles and adults did not occur immediately, but a decline was observed in these age classes as a result of the reduced number of pups recruiting into the older age classes (Bowen et al. 2003). Possible reasons for this decline may be increased use of the island by gray seals and increased predation by sharks (Stobo and Lucas 2000; Bowen et al. 2003). Helicopter surveys have also been flown to count hauled-out animals along the coast and around small islands in parts of the Gulf of St. Lawrence and the St. Lawrence estuary. In the estuary, surveys were flown in June 1995, 1996, and 1997, and in August 1994, 1995, 1996, and 1997; different portions of the Gulf were surveyed in June 1996 and 2001 (Robillard et al. 2005). Changes in counts over time in sectors that were flown under similar conditions were examined at nine sites that were surveyed in June and in August. Although all slopes were positive, only one was significant, indicating numbers are likely stable or increasing slowly. Overall, the June surveys resulted in an average of 469 (SD=60, N=3) hauled-out animals, which is lower than the average count of 621 (SD=41, N=3) hauled-out animals flown under similar conditions in August. Aerial surveys in the Gulf of St. Lawrence resulted in counts of 467 animals in 1996 and 423 animals in 2001 for a different area (Robillard et al. 2005).

Minimum Population Estimate
Present data are insufficient to calculate a minimum population estimate for this stock.

Current Population Trend
There are insufficient data to determine the population trends for this stock.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES
A reliable estimate of the maximum net productivity rate is currently unavailable for this population. Based on uncorrected haul-out counts over the 1981 to 2001 survey period, the harbor seal population was growing at approximately 6.6% (Gilbert et al. 2005). However, a population grows at the maximum growth rate (Rmax) only when it is at a very low level; thus the 6.6% growth rate is not considered to be a reliable estimate of Rmax. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.12. This value is based on theoretical modeling showing that pinniped populations may not grow at rates much greater than 12% given the constraints of their reproductive life history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL
Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum productivity rate (½ of 12%), and a “recovery” factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The recovery factor (Fr) for this stock is 0.5, the value for stocks of unknown status. PBR for the western North Atlantic stock of harbor seals is undetermined.

ANNUAL HUMAN-CAUSED MORTALITY
For the period 2005-2009 the total human caused mortality and serious injury to harbor seals is estimated to be
385 per year. The average was derived from two components: 1)377 (CV=0.13; Table 2) from the 2005-2009 observed fishery; and 2) 8 from average 2005-2009 non-fishery-related, human interaction stranding mortalities (NMFS unpublished data).

Researchers and fishery observers have documented incidental mortality in several fisheries, particularly within the Gulf of Maine (see below). An unknown level of mortality also occurred in the mariculture industry (i.e., salmon farming), and by deliberate shooting (NMFS unpublished data). Between 2005 and 2009, there are 7 records of harbors seals and 3 of unidentified seals with evidence of gunshot wounds in the Northeast Regional Office Marine Mammal Stranding Network database.

Fishery Information
Detailed fishery information is given in Appendix III.

U.S.
Northeast Sink Gillnet:
Annual estimates of harbor seal bycatch in the Northeast sink gillnet fishery reflect seasonal distribution of the species and of fishing effort. The fishery has been observed in the Gulf of Maine and in southern New England (Williams 1999; NMFS unpublished data). There were 581 harbor seal mortalities observed in the Northeast sink gillnet fishery between 1990 and 2009, excluding three animals taken in the 1994 pinger experiment (NMFS unpublished data). Williams (1999) aged 261 harbor seals caught in this fishery from 1991 to 1997, and 93% were juveniles (i.e., less than four years old). Estimated annual mortalities (CV in parentheses) from this fishery were 332 (0.33) in 1998, 1,446 (0.34) in 1999, 917 (0.43) in 2000, 1,471 (0.38) in 2001, 787 (0.32) in 2002, 542 (0.28) in 2003, 792 (0.34) in 2004, 719 (0.20) in 2005, 87 (0.58) in 2006, 92 in 2007, 243 (0.41) in 2008, and 516 (0.28) in 2009 (Table 2). The stratification design used is the same as that for harbor porpoise (Bravington and Bisack 1996). There were 2, 9, 14, 8, 14, 6, and 8 unidentified seals observed during 2003-2009, respectively. Since 1997, unidentified seals have not been prorated to a species. This is consistent with the treatment of other unidentified mammals that do not get prorated to a specific species. Average annual estimated fishery-related mortality and serious injury to this stock attributable to this fishery during 2005-2009 was 332 harbor seals (CV=0.14; Table 2).

Mid-Atlantic Gillnet
No harbor seals were taken in observed trips during 1993-1997, or 1999-2003. Two harbor seals were observed taken in 1998, 1 in 2004, 2 in 2005, 1 in 2006, 0 in 2007, 2 in 2008, and 2 in 2009. Using the observed takes, the estimated annual mortality (CV in parentheses) attributed to this fishery was 0 in 1995-1997 and 1999-2003, 11 in 1998 (0.77), 15 (0.86) in 2004, 63 (0.67) in 2005, 26 (0.98) in 2006, 0 in 2007, 88 (0.74) in 2008, and 47 (0.68) in 2009. Average annual estimated fishery-related mortality attributable to this fishery during 2005-2009 was 45 (CV =0.39) harbor seals (Table 2).

Northeast Bottom Trawl
Seven harbor seal mortalities were observed between 2001 and 2007, 1 in 2002, 1 in 2005, 3 in 2007, 0 in 2008, and 1 in 2009. (Table 2). The estimated annual fishery-related mortality and serious injury attributable to this fishery has not been generated.

Gulf of Maine Atlantic Herring Purse Seine Fishery
The Gulf of Maine Atlantic Herring Purse Seine Fishery is a Category III fishery. This fishery was not observed until 2003. No mortalities have been observed, but 11 harbor seals were captured and released alive in 2004 and 4 in 2005. In addition, 5 seals of unknown species were captured and released alive in 2004, 2 in 2005, 1 in 2007, 1 in 2008 and none in 2009. This fishery was not observed in 2006.

CANADA
Currently, scant data are available on bycatch in Atlantic Canada fisheries due to a lack of observer programs (Baird 2001). An unknown number of harbor seals have been taken in Newfoundland, Labrador, Gulf of St. Lawrence and Bay of Fundy groundfish gillnets, Atlantic Canada and Greenland salmon gillnets, Atlantic Canada cod traps, and in Bay of Fundy herring weirs (Read 1994; Cairns et al. 2000). Furthermore, some of these mortalities (e.g., seals trapped in herring weirs) are the result of direct shooting.
Table 2. Summary of the incidental mortality of harbor seals (*Phoca vitulina concolor*) by commercial fishery including the years sampled (Years), the number of vessels active within the fishery (Vessels), the type of data used (Data Type), the annual observer coverage (Observer Coverage), the mortalities recorded by on-board observers (Observed Mortality), the estimated annual mortality (Estimated Mortality), the estimated CV of the annual mortality (Estimated CVs) and the mean annual mortality (CV in parentheses).

<table>
<thead>
<tr>
<th>Fishery</th>
<th>Years</th>
<th>Data Type</th>
<th>Observer Coverage</th>
<th>Observed Mortality</th>
<th>Estimated Mortality</th>
<th>Estimated CVs</th>
<th>Mean Annual Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northeast Sink Gillnet</td>
<td>05-09</td>
<td>Obs. Data, Weighout, Logbooks</td>
<td>0.7, 0.4, 0.7, 0.5, 0.4</td>
<td>70, 3, 6, 9, 21</td>
<td>719, 87, 93, 243, 516</td>
<td>0.20, 0.58, 0.49, 0.41, 0.28</td>
<td>332 (0.14)</td>
</tr>
<tr>
<td>Mid-Atlantic Gillnet</td>
<td>05-09</td>
<td>Obs. Data, Weighout</td>
<td>0.3, 0.4, 0.6, 0.03, 0.03</td>
<td>2, 1, 0, 2, 2</td>
<td>63, 26, 0, 88, 47</td>
<td>0.67, 0.98, 0.74, 0.68</td>
<td>45 (0.39)</td>
</tr>
<tr>
<td>Northeast Bottom Trawl</td>
<td>05-09</td>
<td>Obs. Data, Weighout</td>
<td>0.12, 0.06, 0.05, 0.08, 0.09</td>
<td>1, 0, 3, 0, 1</td>
<td>unk, unk, unk, unk</td>
<td>unk, unk, unk, unk</td>
<td>unk</td>
</tr>
<tr>
<td>Northeast Mid-water Trawl - Including Pair Trawl</td>
<td>05-09</td>
<td>Obs. Data, Weighout, Trip Logbook</td>
<td>0.199, 0.31, 0.08, 0.199, 0.42</td>
<td>0, 0, 0, 0, 1</td>
<td>0, 0, 0, 1, 3</td>
<td>0, 0, 0, 1, 0.81</td>
<td>0.3 (0.81)</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>377 (0.13)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Observer data (Obs. Data) are used to measure bycatch rates, and the data are collected within the Northeast Fisheries Observer Program. NEFSC collects landings data (Weighout), and total landings are used as a measure of total effort for the sink gillnet fishery. Mandatory logbook (Logbook) data are used to determine the spatial distribution of fishing effort in the Northeast sink gillnet fishery.

b The observer coverages for the Northeast sink gillnet fishery and the mid-Atlantic gillnet fisheries are ratios based on tons of fish landed and coverages for the northeast bottom trawl are ratios based on trips.

c Since 1998, takes from pingered and non-pingered nets within a marine mammal time/area closure that required pingers, and takes from pingered and non-pingered nets not within a marine mammal time/area closure were pooled. The pooled bycatch rate was weighted by the total number of samples taken from the stratum and used to estimate the mortality. In 2005 - 2009, respectively, 3, 3, 2, 0 and 8 takes were observed in nets with pingers. In 2005 – 2009, respectively, 67, 0, 4, 9 and 13 takes were observed in nets without pingers.

d Analysis of bycatch mortality attributed to the Northeast bottom trawl fishery for the years 2005-2009 has not been generated.

Other Mortality

Canada: Aquaculture operations in eastern Canada are licensed to shoot nuisance seals, but the number of seals killed is unknown (Jacobs and Terhune 2000; Baird 2001). Small numbers of harbor seals are taken in subsistence hunting in northern Canada, and Canada also issues personal hunting licenses which allow the holder to take six seals annually (DFO 2008).

U.S.: Historically, harbor seals were bounty-hunted in New England waters, which may have caused a severe decline of this stock in U.S. waters (Katona et al. 1993; Lelli et al., 2009). Bounty-hunting ended in the mid-1960s.

Other sources of harbor seal mortality include human interactions, storms, abandonment by the mother, disease, and predation (Katona et al. 1993; NMFS unpublished data; Jacobs and Terhune 2000). Mortalities caused by human interactions include boat strikes, fishing gear interactions, oil spill/exposure, harassment, and shooting.

Small numbers of harbor seals strand each year throughout their migratory range. Stranding data provide insight into some of these sources of mortality. From 2005 to 2009, 1,477 harbor seal stranding mortalities were reported between Maine and Florida (Table 3; NMFS unpublished data). Fifty-nine (4%) of the seals stranded during this five-year period showed signs of human interaction (14 in 2005, 8 in 2006, 21 in 2007, 10 in 2008, and 6 in 2009), with 18 having some sign of fishery interaction (0 in 2005, 8 in 2006, 5 in 2007, 5 in 2008, and 0 in 2009). Seven
harbor seals during this period were reported as having been shot. An Unusual Mortality Event (UME) was declared for harbor seals in northern Gulf of Maine waters in 2003 and continued into 2004. No consistent cause of death could be determined. The UME was declared over in spring 2005 (MMC 2006). NMFS declared another UME in the Gulf of Maine in autumn 2006 based on infectious disease.

Stobie and Lucas (2000) have documented shark predation as an important source of natural mortality at Sable Island, Nova Scotia. They suggest that shark-inflicted mortality in pups, as a proportion of total production, was less than 10% in 1980-1993, approximately 25% in 1994-1995, and increased to 45% in 1996. Also, shark predation on adults was selective towards mature females. The decline in the Sable Island population appears to result from a combination of shark-inflicted mortality on both pups and adult females and inter-specific competition with the much more abundant gray seal for food resources (Stobie and Lucas 2000; Bowen et al. 2003).

Table 3. Harbor seal (Phoca vitulina concolor) stranding mortalities along the U.S. Atlantic coast (2005-2009) with subtotals of animals recorded as pups in parenthesesa.

<table>
<thead>
<tr>
<th>State</th>
<th>2005</th>
<th>2006b</th>
<th>2007b</th>
<th>2008</th>
<th>2009</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME</td>
<td>121 (94)</td>
<td>371 (220)</td>
<td>106 (80)</td>
<td>178 (152)</td>
<td>76 (64)</td>
<td>852</td>
</tr>
<tr>
<td>NH</td>
<td>31 (25)</td>
<td>28 (19)</td>
<td>6 (5)</td>
<td>3 (2)</td>
<td>15 (12)</td>
<td>83</td>
</tr>
<tr>
<td>MA</td>
<td>101 (45)</td>
<td>94 (35)</td>
<td>51 (17)</td>
<td>50 (4)</td>
<td>74 (36)</td>
<td>370</td>
</tr>
<tr>
<td>RI</td>
<td>3</td>
<td>6 (3)</td>
<td>8 (1)</td>
<td>6 (4)</td>
<td>5 (2)</td>
<td>28</td>
</tr>
<tr>
<td>CT</td>
<td>2 (1)</td>
<td>1 (1)</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>NY</td>
<td>22 (2)</td>
<td>11</td>
<td>11 (7)</td>
<td>5 (1)</td>
<td>14 (1)</td>
<td>63</td>
</tr>
<tr>
<td>NJ</td>
<td>1 (1)</td>
<td>7</td>
<td>6</td>
<td>7</td>
<td>11 (2)</td>
<td>32</td>
</tr>
<tr>
<td>DE</td>
<td>3 (1)</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>MD</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>VA</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>NC</td>
<td>8 (3)</td>
<td>4</td>
<td>0</td>
<td>6 (2)</td>
<td>6 (5)</td>
<td>24</td>
</tr>
<tr>
<td>FL</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>297</td>
<td>527</td>
<td>191</td>
<td>256</td>
<td>206</td>
<td>1477</td>
</tr>
<tr>
<td>Unspecified seals (all states)</td>
<td>59</td>
<td>46</td>
<td>34</td>
<td>51</td>
<td>34</td>
<td>224</td>
</tr>
</tbody>
</table>

a. Some of the data reported in this table differ from that reported in previous years. We have reviewed the records and made an effort to standardize reporting. Records of live releases and rehabbed animals have been eliminated. Mortalities include animals found dead and animals that were euthanized, died during handling, or died in the transfer to, or upon arrival at, rehab facilities.

STATUS OF STOCK

The status of the western North Atlantic harbor seal stock, relative to OSP, in the U.S. Atlantic EEZ is unknown. The species is not listed as threatened or endangered under the Endangered Species Act. Total fishery-related mortality and serious injury for this stock is believed to be low relative to the population size in U.S. waters but cannot be considered to be approaching zero mortality and serious injury rate. Although PBR cannot be determined for this stock, the level of human-caused mortality and serious injury in the U.S. Atlantic EEZ is believed to be low relative to the total stock size; therefore, this is not a strategic stock.

REFERENCES CITED

GRAY SEAL (*Halichoerus grypus grypus*):
Western North Atlantic Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

The gray seal is found on both sides of the North Atlantic, with three major populations: eastern Canada, northwestern Europe and the Baltic Sea (Katona et al. 1993). The western North Atlantic stock is equivalent to the eastern Canada population, and ranges from New York to Labrador (Davies 1957; Mansfield 1966; Katona et al. 1993; Lesage and Hammill 2001). This stock is separated by geography, differences in the breeding season, and mitochondrial DNA variation from the northeastern Atlantic stock (Bonner 1981; Boskovic et al. 1996; Lesage and Hammill 2001). There are two breeding concentrations in eastern Canada; one at Sable Island, and one that breeds on the pack ice in the Gulf of St. Lawrence (Lavigne and Hammill 1993). Tagging studies indicate that there is little intermixing between the two breeding groups (Zwanenberg and Bowen 1990) and, for management purposes, they are treated by the Canadian DFO as separate stocks (Mohn and Bowen 1996). In the mid-1980s, small numbers of animals and pupping were observed on several isolated islands along the Maine coast and in Nantucket-Vineyard Sound, Massachusetts (Katona et al. 1993; Rough 1995: J. R. Gilbert, pers. comm., University of Maine, Orono, ME). In the late 1990s, a year-round breeding population of approximately 400+ animals was documented on outer Cape Cod and Muskeget Island (D. Murley, pers. comm., Mass. Audubon Society, Wellfleet, MA). In December 2001, NMFS initiated aerial surveys to monitor gray seal pup production on Muskeget Island and adjacent sites in Nantucket Sound, and Green and Seal Islands off the coast of Maine (Wood et al. 2007).

POPULATION SIZE

Current estimates of the total western Atlantic gray seal population are not available; although estimates of portions of the stock are available for select time periods. The size of the Canadian population from 1993 to 2004 has been estimated from three surveys. A 1993 survey estimated the population at 144,000 animals (Mohn and Bowen 1996; DFO 2003) a 1997 survey estimated 195,000 (DFO 2003), and a 2004 survey obtained estimates ranging between 208,720 (SE=29,730) and 223,220 (SE=17,376) depending upon the model used (Trzcinski et al. 2005). The population at Sable Island had been increasing by approximately 13% per year for nearly 40 years (Bowen et al. 2003), but the most recent (2004) survey results indicated that this rate of population increase had declined to 7% (Trzcinski et al. 2005; Bowen et al. 2007). The non-Sable Island (Gulf of St Lawrence and Eastern Shore) abundance has increased from 20,900 (SE=200) in 1970 to 52,500 (SE=7,800) in 2004 (Hammill 2005).

In U.S. waters, gray seals currently pup at three established colonies: Muskeget Island, Massachusetts, Green Island, Maine, and Seal Island, Maine, as well as, more recently, at Matinicuc Rock in Maine. They have been observed using the historic pupping site on Muskeget Island in Massachusetts since 1990. Pupping has taken place on Seal and Green Islands in Maine since at least the mid 1990’s. Aerial survey data from these sites indicate that

![Figure 1. Approximate coastal range of gray seals. Isobaths are the 100-m, 1000-m, and 4000-m depth contours.](image)
pup production is increasing. A minimum of 2,620 pups (Muskeget= 2,095, Green= 59, Seal= 466) was born in the U.S. in 2008 (Wood LaFond 2009). Table 2 summarizes single-day pup counts from the three U.S. pupping colonies from 2001/2002 to 2007/2008 pupping periods. The decrease in pup counts in some years is an artifact of survey timing and not indicative of true declines in those years. In recent years NMFS monitoring surveys have detected an occasional mother/pup (white coats) pair on both Monomoy Island and Noman’s Land in Massachusetts. Some of the local breeders have been observed with brands and tags indicating they had been born on Sable Island, Canada (Rough 1995). The increase in the number of gray seals observed in the U.S. is probably due to both natural increase and immigration.

Gray seals are also observed in New England outside of the pupping season. In April-May 1994 a maximum count of 2,010 was obtained for Muskeget Island and Monomoy combined (Rough 1995). Maine coast-wide surveys conducted during summer revealed 597 and 1,731 gray seals in 1993 and 2001, respectively (Gilbert et al. 2005). In March 1999 a maximum count of 5,611 was obtained in the region south of Maine (between Isles of Shoals, Maine and Woods Hole, Massachusetts) (Barlas 1999). No gray seals were recorded at haul-out sites between Newport, Rhode Island and Montauk Pt., New York (Barlas 1999), although, more recently several hundred gray seals have been recorded in surveys conducted off eastern Long Island (R. DiGiovanni, pers. comm., The Riverhead Foundation, Riverhead, NY).

Table 1. Summary of abundance estimates for the western North Atlantic gray seal: month, year, and area covered during each abundance survey, resulting abundance estimate (N_{best}) and coefficient of variation (CV).

<table>
<thead>
<tr>
<th>Month/Year</th>
<th>Area</th>
<th>N_{best}</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 2004*</td>
<td>Gulf of St Lawrence + Nova Scotia Eastern Shore</td>
<td>52,500</td>
<td>0.15</td>
</tr>
<tr>
<td>January 2004†</td>
<td>Sable Island</td>
<td>208,720</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>216,490</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>223,220</td>
<td>0.08</td>
</tr>
</tbody>
</table>

*These are model based estimates derived from pup surveys.

Table 2. The number of pups observed on Muskeget, Seal, and Green Islands 2002-2008. Data are from aerial surveys. These are single-day counts, not estimates of total pup production. (Wood LaFond 2009).

<table>
<thead>
<tr>
<th>Pupping Season</th>
<th>Muskeget Island</th>
<th>Seal Island</th>
<th>Green Island</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001-2</td>
<td>883</td>
<td>No data</td>
<td>34</td>
</tr>
<tr>
<td>2002-3</td>
<td>509</td>
<td>147</td>
<td>No data</td>
</tr>
<tr>
<td>2003-4</td>
<td>824</td>
<td>150</td>
<td>26</td>
</tr>
<tr>
<td>2004-5</td>
<td>992</td>
<td>365</td>
<td>33</td>
</tr>
<tr>
<td>2005-6</td>
<td>868</td>
<td>239</td>
<td>43</td>
</tr>
<tr>
<td>2006-7</td>
<td>1704</td>
<td>364</td>
<td>57</td>
</tr>
<tr>
<td>2007-8</td>
<td>2095</td>
<td>466</td>
<td>59</td>
</tr>
</tbody>
</table>

Minimum Population Estimate

Depending on the model used, the N_{min} for the Canadian gray seal population was estimated to range between 125,541 and 169,064 (Trzcinski et al. 2005) Present data are insufficient to calculate the minimum population estimate for U.S. waters.

Current Population Trend

Gray seal abundance is likely increasing in the U.S. Atlantic Exclusive Economic Zone (EEZ), but the rate of increase is unknown. The population in eastern Canada was greatly reduced by hunting and bounty programs, and in the 1950s the gray seal was considered rare (Lesage and Hammill 2001). The Sable Island population was less affected and has been increasing for several decades. Pup production on Sable Island, Nova Scotia, has increased exponentially at a rate of 12.8% annually for more than 40 years (Stobo and Zwanenburg 1990; Mohn and Bowen 1996; Bowen et al. 2003; Trzcinski et al. 2005; Bowen et al. 2007), but has declined to 7% in 2004 (Trzcinski et al. 2005; Bowen et al. 2007). The non Sable Island population increased from 6,900 in the mid-1980s to a peak of 11,100 (SE=1,300) animals in 1996 (Hammill and Gosselin 2005). Pup production declined to 6,100 (SE=900) in 2000, then increased to 15,900 (SE=1,200) in 2004 (Hammill and Gosselin 2005). Approximately 57% of the
western North Atlantic population is from the Sable Island stock. In recent years pupping has been established on Hay Island, off the Cape Breton coast (Lesage and Hammill 2001).

Surveys of winter breeding colonies in Maine and on Muskeget Island may provide some measure of gray seal population trends and expansion in distribution. Sightings in New England increased during the 1980's as the gray seal population and range expanded in eastern Canada. Five pups were born at Muskeget in 1988. The number of pups increased to 12 in 1992, 30 in 1993, and 59 in 1994 (Rough 1995). In January 2002, 883 pups were counted on Muskeget Island and surrounding shoals (Wood Lafond 2009). In recent years NMFS monitoring surveys have detected an occasional mother/pup (white coats) pair on both Monomoy Island and Nomans Land. These observations continue the increasing trend in pup production reported by Rough (1995). The change in gray seal counts at Muskeget and Monomoy from 2,010 in spring 1994 to 5,611 in spring 1999 represents an annual increase rate of 20.5%, however, it has not been determined what proportion of the increase represents growth or immigration. For example, a few gray seals branded as pups on Sable Island in the 1970s (Stobo and Zwanenburg 1990) are typically sighted in the Cape Cod region during winter.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. A recent study estimated the current annual rate of increase at 7% on Sable Island (Trzcinski et al. 2005; Bowen et al. 2007), which represents a 45% decline from previous estimates (Mohn and Bowen 1996; Bowen et al. 2003). For purposes of this assessment, the maximum net productivity rate was assumed to be 0.12. This value is based on theoretical modeling showing that pinniped populations may not grow at rates much greater than 12% given the constraints of their reproductive life history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum productivity rate, and a “recovery” factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is unknown. The maximum productivity rate is 0.12, the default value for pinnipeds. The recovery factor (F_r) for this stock is 1.0, the value for stocks of unknown status, but which are known to be increasing. PBR for the western North Atlantic gray seals in U.S. waters is unknown.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

For the period 2005-2009, the total estimated human caused mortality and serious injury to gray seals was 1,682 per year. The average was derived from three components: 1) 678 (Table 3) from the 2005-2009 U.S. observed fishery; 2) 5 from average 2005-2009 non-fishery related, human interaction stranding mortalities (NMFS unpublished data); and 3) 999 from average 2005-2009 kill in the Canadian hunt.

Fishery Information

Detailed fishery information is given in Appendix III.

U.S.

Northeast Sink Gillnet

Annual estimates of gray seal bycatch in the Northeast sink gillnet fishery reflect seasonal distribution of the species and of fishing effort. There were 268 gray seal mortalities observed in the Northeast sink gillnet fishery between 1993 and 2009. Estimated annual mortalities (CV in parentheses) from this fishery were 0 in 1990-1992, 18 in 1993 (1.00), 19 in 1994 (0.95), 117 in 1995 (0.42), 49 in 1996 (0.49), 131 in 1997 (0.50), 61 in 1998 (0.98), 155 in 1999 (0.51), 193 in 2000 (0.55), 117 in 2001 (0.59), 0 in 2002, 242 (0.47) in 2003, 504 (0.34) in 2004, 574 (0.44) in 2005, 314 (0.22) in 2006, 886 (0.24) in 2007, 618 (0.23) in 2008 and 1,063 in 2009 (Table 3). There were 2, 9, 14, 8, 14, 6, and 8 unidentified seals observed during 2003-2009, respectively. Since 1997 unidentified seals have not been prorated to a species. This is consistent with the treatment of other unidentified mammals that do not get prorated to a specific species. Annual estimated observed fishery-related mortality and serious injury to this stock attributable to fishery during 2005-2009 was 678 gray seals (CV=0.14) (Table 3). The stratification design used is the same as that for harbor porpoise (Bravington and Bisack 1996).

Gulf of Maine Atlantic Herring Purse Seine Fishery

The Gulf of Maine Atlantic Herring Purse Seine Fishery is a Category III fishery. This fishery was not observed until 2003, and was not observed in 2006. No mortalities have been observed, but 15 gray seals were captured and released alive in 2004, 19 in 2005, 0 in 2007, 6 in 2008, and 0 in 2009. In addition, 5 seals of unknown species were

Northeast Bottom Trawl

Vessels in the North Atlantic bottom trawl fishery, a Category III fishery under MMPA, were observed in order to meet fishery management, rather than marine mammal management needs. No mortalities were observed prior to 2005, when four mortalities were attributed to this fishery. No mortalities were observed in 2006. The estimated annual fishery-related mortality and serious injury attributable to this fishery was 0 between 2001 and 2004, and for 2006. Nine gray seal mortalities were attributed to this fishery in 2007, 4 in 2008 and 8 in 2009. Estimates have not been generated.

CANADA

An unknown number of gray seals have been taken in Newfoundland and Labrador, Gulf of St. Lawrence, and Bay of Fundy groundfish gillnets, Atlantic Canada and Greenland salmon gillnets, Atlantic Canada cod traps, and in Bay of Fundy herring weirs (Read 1994). In addition to incidental catches, some mortalities (e.g., seals trapped in herring weirs) were the result of direct shooting, and there were culls of about 1,700 animals annually during the 1970s and early 1980s on Sable Island (Anonymous 1986).

In 1996, observers recorded 3 gray seals (1 released alive) in Spanish deep-water trawl fishing on the southern edge of the Grand Banks (NAFO Areas 3) (Lens 1997). Seal bycatch occurred year-round, but interactions were highest during April-June. Many of the seals that died during fishing activities were unidentified. The proportion of sets with mortality (all seals) was 2.7 per 1,000 hauls (0.003).

Table 3. Summary of the incidental mortality of gray seal (Halichoerus grypus grypus) by commercial fishery including the years sampled (Years), the type of data used (Data Type), the annual observer coverage (Observer Coverage), the mortalities recorded by on-board observers (Observed Mortality), the estimated annual mortality (Estimated Mortality), the estimated CV of the annual mortality (Estimated CV), and the mean annual mortality (CV in parentheses).

<table>
<thead>
<tr>
<th>Fishery</th>
<th>Years</th>
<th>Data Typea</th>
<th>Observerb</th>
<th>Observed Mortality</th>
<th>Estimated Mortality</th>
<th>Estimated CV</th>
<th>Mean Annual Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northeast Sink</td>
<td>05-09</td>
<td>Obs. Data,</td>
<td>.07, .04, .07, .05, .04</td>
<td>33, 9, 80, 31, 52</td>
<td>574, 248, 886, 618, 1063</td>
<td>.44, .47, .24, .23, .26</td>
<td>678 (0.14)</td>
</tr>
<tr>
<td>Gillnet</td>
<td></td>
<td>Weighout, Logbooks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northeast Bottom</td>
<td>05-09</td>
<td>Obs. Data,</td>
<td>.12, .06, .06, .08, .09</td>
<td>4, 0, 9, 4, 8</td>
<td>unk d, 0, unk d, unk d</td>
<td>unk d, unk</td>
<td>678 (0.14)</td>
</tr>
<tr>
<td>Trawl</td>
<td></td>
<td>Weighout</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Observer data (Obs. Data) are used to measure bycatch rates, and the data are collected within the Northeast Fisheries Observer Program. The Northeast Fisheries Observer Program collects landings data (Weighout), and total landings are used as a measure of total effort for the sink gillnet fishery. Mandatory logbook (Logbook) data are used to determine the spatial distribution of fishing effort in the Northeast multispecies sink gillnet fishery.

b. The observer coverages for the Northeast sink gillnet fishery and the mid-Atlantic gillnet fisheries are ratios based on tons of fish landed.

c. Since 1998, takes from pingered and non-pingered nets within a marine mammal time/area closure that required pingers, and takes from pingered and non-pingered nets not within a marine mammal time/area closure were pooled. The pooled bycatch rate was weighted by the total number of samples taken from the stratum and used to estimate the mortality. In 2005-2009, respectively, 1, 1, 8, 4 and 13 takes were observed in nets with pingers. In 2005 – 2009, respectively, 20, 32, 8, 72, 27 and 39 takes were observed in nets without pingers.

d. Analysis of bycatch mortality attributed to the Northeast bottom trawl fishery has not been generated.

Other Mortality

Canada: In Canada, gray seals were hunted for several centuries by indigenous people and European settlers in the Gulf of St. Lawrence and along the Nova Scotia eastern shore, and were locally extirpated (Laviguer and
Hammill 1993). Between 1999 and 2009 the annual kill of gray seals by hunters in Canada was: 1999 (98), 2000 (342), 2001 (76), 2002 (126), 2003 (6), 2004 (0), 2005 (579), 2006 (1,804) 2007 (887), 2008 (1,472), and 2009 (254). (DFO 2003; 2008; 2009; M. Hammill pers. comm.). The traditional hunt of a few hundred animals is expected to continue off the Magdalen Islands and in other areas, except Sable Island where commercial hunting is not permitted (DFO 2003). DFO established a total allowable catch (TAC) of 12,000 gray seals for 2007 and 2008: 2,000 in the Gulf and 10,000 on the Scotian Shelf. The TAC for 2009 and 2010 was 50,000 seals. Since 2007, a small commercial hunt has taken place on Hay Island in Nova Scotia (http://www.dfo-mpo.gc.ca/fm-gp/seal-phoque/faq-eng.htm). The hunting of gray seals will continue to be prohibited on Sable Island (http://www.dfo-mpo.gc.ca/seal-phoque/index_e.htm).

Canada also issues personal hunting licenses which allow the holder to take six gray seals annually (Lesage and Hammill 2001). Hunting is not permitted during the breeding season and some additional seasonal/spatial restrictions are in effect (Lesage and Hammill 2001).

U.S: Gray seals, like harbor seals, were hunted for bounty in New England waters until the late 1960s (Katona, et al. 1993; Lelli, et al. 2009). This hunt may have severely depleted this stock in U.S. waters (Rough 1995; Lelli, et al. 2009). Other sources of mortality include human interactions, storms, abandonment by the mother, disease, and predation. Mortalities caused by human interactions include boat strikes, fishing gear interactions, power plant entrapment, oil spill/exposure, harassment, and shooting. The Cape Cod stranding network has documented gray seals entangled in netting or plastic debris around the Cape Cod/Nantucket area, and in recent years have made successful disentanglement attempts.

From 2005 to 2009, 224 gray seal stranding mortalities were recorded, extending from Maine to North Carolina (Table 4; NMFS unpublished data). Most stranding mortalities were in Massachusetts, which is the center of gray seal abundance in U.S. waters. Fifty-one (22.8%) of the total stranding mortalities showed signs of human interaction (3 in 2005, 5 in 2006, 8 in 2007, 21 in 2008, and 14 in 2009), with 27 having some indication of fishery interaction (1 in 2005, 5 in 2006, 5 in 2007, 7 in 2008, and 9 in 2009). One gray seal during this period was reported as having been shot.

Table 4. Gray seal (*Halichoerus grypus grypus*) stranding mortalities along the U.S. Atlantic coast (2005-2009) with subtotals of animals recorded as pups in parentheses.

<table>
<thead>
<tr>
<th>State</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME</td>
<td>4 (1)</td>
<td>3</td>
<td>5 (1)</td>
<td>6 (1)</td>
<td>3</td>
<td>21</td>
</tr>
<tr>
<td>NH</td>
<td>0</td>
<td>0</td>
<td>1 (1)</td>
<td>0</td>
<td>1 (1)</td>
<td>2</td>
</tr>
<tr>
<td>MA</td>
<td>26 (6)</td>
<td>29 (5)</td>
<td>50 (9)</td>
<td>53 (4)</td>
<td>52 (7)</td>
<td>210</td>
</tr>
<tr>
<td>RI</td>
<td>2 (1)</td>
<td>2 (2)</td>
<td>5 (1)</td>
<td>7</td>
<td>10 (2)</td>
<td>26</td>
</tr>
<tr>
<td>CT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 (1)</td>
<td>1</td>
</tr>
<tr>
<td>NY</td>
<td>7</td>
<td>6 (4)</td>
<td>21 (17)</td>
<td>2 (2)</td>
<td>16 (7)</td>
<td>52</td>
</tr>
<tr>
<td>NJ</td>
<td>2 (2)</td>
<td>1 (1)</td>
<td>5 (2)</td>
<td>3</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>DE</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 (1)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>MD</td>
<td>3 (2)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>VA</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>NC</td>
<td>0</td>
<td>2</td>
<td>1 (1)</td>
<td>1 (1)</td>
<td>1 (1)</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>45 (12)</td>
<td>43 (12)</td>
<td>90 (32)</td>
<td>75 (9)</td>
<td>91 (19)</td>
<td>344 (84)</td>
</tr>
</tbody>
</table>

Unspecified seals (all states) | 59 | 46 | 34 | 51 | 34 | 224

a: Mortalities include those which stranded dead, died at site, were euthanized, died during transport, or died soon after transfer to rehab.
STATUS OF STOCK

The status of the gray seal population relative to OSP in U.S. Atlantic EEZ waters is unknown, but the stock's abundance appears to be increasing in Canadian and U.S. waters. The species is not listed as threatened or endangered under the Endangered Species Act. The total U.S. fishery-related mortality and serious injury for this stock is low relative to the stock size in Canadian and U.S. waters and can be considered insignificant and approaching zero mortality and serious injury rate. The level of human-caused mortality and serious injury in the U.S. Atlantic EEZ is unknown, but believed to be very low relative to the total stock size; therefore, this is not a strategic stock.

REFERENCES CITED

HARP SEAL (Pagophilus groenlandicus):
Western North Atlantic Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

The harp seal occurs throughout much of the North Atlantic and Arctic Oceans (Ronald and Healey 1981; Lavigne and Kovacs 1988). The world’s harp seal population is divided into three separate stocks, each identified with a specific pupping site on the pack ice (Lavigne and Kovacs 1988; Bonner 1990). The largest stock is located off eastern Canada and is divided into two breeding herds. The Front herd breeds off the coast of Newfoundland and Labrador, and the Gulf herd breeds near the Magdalen Islands in the middle of the Gulf of St. Lawrence (Sergeant 1965; Lavigne and Kovacs 1988). The second stock breeds on the West Ice off eastern Greenland (Lavigne and Kovacs 1988), and the third stock breeds on the ice in the White Sea off the coast of Russia. The Front/Gulf stock is equivalent to western North Atlantic stock.

Harp seals are highly migratory (Sergeant 1965; Stenson and Sjare 1997). Breeding occurs at different times for each stock between late-February and April. Adults then assemble on suitable pack ice to undergo the annual molt. The migration then continues north to Arctic summer feeding grounds. In late September, after a summer of feeding, nearly all adults and some of the immature animals of the western North Atlantic stock migrate southward along the Labrador coast, usually reaching the entrance to the Gulf of St. Lawrence by early winter. There they split into two groups, one moving into the Gulf and the other remaining off the coast of Newfoundland. The southern limit of the harp seal’s habitat extends into the U.S. Atlantic Exclusive Economic Zone (EEZ) during winter and spring.

Since the early 1990s, numbers of sightings and strandings have been increasing off the east coast of the United States from Maine to New Jersey (Katona et al. 1993; Rubinstein 1994; Stevick and Fernald 1998; McAlpine 1999; Lacoste and Stenson 2000). These extralimital appearances usually occur in January-May (Harris et al. 2002), when the western North Atlantic stock of harp seals is at its most southern point of migration. Concomitantly, a southward shift in winter distribution off Newfoundland was observed during the mid-1990s, which was attributed to abnormal environmental conditions (Lacoste and Stenson 2000).

POPULATION SIZE

Abundance estimates for the western North Atlantic stock are available which use a variety of methods including aerial surveys and mark-recapture (Table 1). These methods involve surveying the whelping concentrations and estimating total population adult numbers from pup production. Roff and Bowen (1983) developed an estimation model to provide a more precise estimate of total abundance. This technique incorporates recent pregnancy rates and estimates of age-specific hunting mortality (CAFSAC 1992). This model has subsequently been updated in Shelton et al. (1992), Stenson (1993), Shelton et al. (1996), and Warren et al. (1997). The revised 2000 population estimate was 5.5 million (95% CI= 4.5-6.4 million) harp seals. (Healey and Stenson 2000). The estimate based on the 2004 survey was calculated at 5.82 million (95% CI=4.1-7.6 million; Hammill and

Figure 1: From: Technical Briefing on the Harp Seal Hunt in Atlantic Canada
http://www.dfo-mpo.gc.ca/misc/seal_briefing_e.htm

125
Stenson 2005) but has been subsequently revised to 5.5 million (95% CI=3.8 - 7.1 million; Table 1; DFO 2007). The 2008 and 2009 estimates, respectively, based on the 2008 survey of the Gulf and Front were 6.5 million (95% CI=5.7 to 7.3 million) and 6.9 million (95% CI=6.0 to 7.7 million; Table 1; DFO 2010).

<table>
<thead>
<tr>
<th>Month/Year</th>
<th>Area</th>
<th>N<sub>best</sub></th>
<th>CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>Front and Gulf</td>
<td>5.5 million</td>
<td>(95% CI 3.8-7.1 million)</td>
</tr>
<tr>
<td>2008</td>
<td>Front and Gulf</td>
<td>6.5 million</td>
<td>(95% CI 5.7-7.3 million)</td>
</tr>
<tr>
<td>2009</td>
<td>Front and Gulf</td>
<td>6.9 million</td>
<td>(95% CI 6.0-7.7 million)</td>
</tr>
</tbody>
</table>

Minimum population estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normally distributed best abundance estimate. This is equivalent to the 20th percentile of the log-normal distribution as specified by (Wade and Angliss 1997). The best estimate of abundance for western North Atlantic harp seals is 6.9 million (95% CI 6.0-7.7 million; DFO 2010). The minimum population estimate based on the 2008 pup survey results is 6.5 million (CV=0.06) seals. Data are insufficient to calculate the minimum population estimate for U.S. waters.

Current population trend

Harp seal pup production in the 1950s was estimated at 645,000, but had decreased to 225,000 by 1970 (Sergeant 1975). Estimated number then began to increase and have continued to increase through the late 1990s, reaching 478,000 in 1979 (Bowen and Sergeant 1983; 1985), 577,900 (CV=0.07) in 1990 (Stenson et al. 1993), 708,400 (CV=0.10) in 1994 (Stenson et al. 2002), and 998,000 (CV=0.10) in 1999 (Stenson et al. 2003). The 2004 estimate of 991,000 pups (CV=0.06) was not significantly different from the 1999 estimate, which suggested that the increase in pup production observed throughout the 1990s may have abated (Stenson et al. 2005). The 2008 estimate of 1,076,600 pups (CV=0.06) is based on the visual aerial survey counts (DFO 2010).

The population appears to be increasing in U.S. waters, judging from the increased number of stranded harp seals, but the magnitude of the suspected increase is unknown.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.12. This value is based on theoretical modeling showing that pinniped populations may not grow at rates much greater than 12% given the constraints of their reproductive life history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum productivity rate, and a “recovery” factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size in U.S. waters is unknown. The maximum productivity rate is 0.12, the default value for pinnipeds. The “recovery” factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP) was set at 1.0 the population is increasing. PBR for the western North Atlantic harp seal in U.S. waters is unknown. Applying the formula to the minimum population estimate for Canadian waters results in a "PBR" of 289,220 harp seals. However, the PBR for the stock in US waters is unknown.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

For the period 2005-2009 the total estimated annual human caused mortality and serious injury to harp seals was 441,950. This is derived from two components: 1) an average catch of 441,719 seals from 2005-2009 by Canada and Greenland, including bycatch in the lumpfish fishery (Table 2a); and 2) 231 harp seals (CV=0.18) from the observed U.S. fisheries (Table 2b).
Table 2a. Summary of the Canadian directed catch and bycatch incidental mortality of harp seal (*Pagophilus groenlandicus*) by year.

<table>
<thead>
<tr>
<th>Fishery</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial catches<sup>a</sup></td>
<td>323,826</td>
<td>354,867</td>
<td>224,745</td>
<td>217,850</td>
<td>76,668</td>
<td>239,591</td>
</tr>
<tr>
<td>Commercial catch struck and lost<sup>b</sup></td>
<td>21,495</td>
<td>26,674</td>
<td>14,914</td>
<td>11,724</td>
<td>4,035</td>
<td>15,768</td>
</tr>
<tr>
<td>Greenland subsistence catch<sup>c</sup></td>
<td>91,696</td>
<td>92,210</td>
<td>82,778</td>
<td>82,843</td>
<td>82,843</td>
<td>86,474</td>
</tr>
<tr>
<td>Canadian Arctic<sup>d</sup></td>
<td>1,000</td>
<td>1,000</td>
<td>1,000</td>
<td>1,000</td>
<td>1,000</td>
<td>1,000</td>
</tr>
<tr>
<td>Greenland and Canadian Arctic struck and lost<sup>e</sup></td>
<td>92,696</td>
<td>93,210</td>
<td>83,778</td>
<td>81,648</td>
<td>83,843</td>
<td>87,035</td>
</tr>
<tr>
<td>Newfoundland lumpfish<sup>f</sup></td>
<td>12,290</td>
<td>12,290</td>
<td>12,290</td>
<td>12,290</td>
<td>12,290</td>
<td>12,290</td>
</tr>
<tr>
<td>Total</td>
<td>543,002</td>
<td>580,251</td>
<td>419,505</td>
<td>405,160</td>
<td>260,679</td>
<td>441,719</td>
</tr>
</tbody>
</table>

b. Struck and lost is calculated for the commercial harvest assuming that the rate is 5% for young of the year, and 50% for animals one year of age and older (DFO 2001, Stenson unpublished data).

c. ICES 2003, DFO 2005, 2010; Stenson unpublished data; 2002-2004 average used for 2005

d. Hammill and Stenson 2003; Stenson unpublished data;

e. The Canadian Arctic and Greenland struck and lost rate is calculated assuming the rate is 50% for all age classes (DFO 2001; Stenson unpublished data); 2002-2004 average used for 2005.

f. DFO 2005; Stenson unpublished data; 2001-2004 average used.

Fishery Information

U.S.

Detailed fishery information is reported in the Appendix III.

Northeast Sink Gillnet:

Annual estimates of harp seal bycatch in the Northeast sink gillnet fishery reflect seasonal distribution of the species and of fishing effort. There were 200 harp seal mortalities observed in the Northeast sink gillnet fishery between 1990 and 2009. The bycatch occurred principally in winter (January-May) and was mainly in waters from New Hampshire south to the shelf and shelf-edge waters southwest of Cape Cod. The stratification design used for this species is the same as that for harbor porpoise (Bravington and Bisack 1996). Estimated annual mortalities (CV in parentheses) from this fishery were: 81 (0.78) in 1999, 24 (1.57) in 2000, 26 (1.04) in 2001, 0 during 2002-2003, 303 (0.30) in 2004, 35 (0.68) in 2005, 65 (0.66) in 2006, 119 (0.35) in 2007, 238 (0.38) in 2008, and 415 (0.27) in 2009 (Table 2b). There were also 9, 14, 8, 18, 6, and 8 unidentified seals observed during 2004 through 2009 respectively. Since 1997, unidentified seals have not been prorated to a species. This is consistent with the treatment of other unidentified mammals that do not get prorated to a specific species. Average annual estimated fishery-related mortality and serious injury to this stock attributable to this fishery during 2005-2009 was 174 harp seals (CV= 0.27) (Table 2b).

A study on the effects of two different hanging ratios in the bottom set monkfish gillnet fishery on the bycatch of cetaceans and pinnipeds was conducted by NEFSC in 2009 and 2010. Commercial fishing vessels from Massachusetts and New Jersey were used for the study which took place south of the Harbor Porpoise Take Reduction Team Cape Cod South Management Area (south of 40' 40') in February, March and April. One hundred fifty-nine hauls with eight research strings each were completed during the course of the study. Results showed that while a 0.33 mesh performed better at catching commercially important fishfin than a 0.50 mesh, there was no statistical difference in cetacean or pinniped bycatch rates between the two hanging ratios (Schnaittacher 2011).

Mid-Atlantic Gillnet:

No harp seals were taken in observed trips during 1993-1997 or 1999-2006. One harp seal was observed taken in both 1998 and 2007, 4 were taken in 2008, and 3 in 2009. All bycatches were documented during January to April. Using the observed takes, the estimated annual mortality (CV in parentheses) attributed to this fishery was 0 in
1995-1997, 17 in 1998 (1.02), 0 in 1999-2006 38 in 2007, 176 (0.74) in 2008, and 70 (0.67) in 2009. Average annual estimated fishery-related mortality attributable to this fishery during 2005-2009 was 57 harp seals (CV=0.50) (Table 2b).

Northeast Bottom Trawl

Four mortalities were observed in the Northeast bottom trawl fishery between 2002 and 2009. The estimated annual fishery-related mortality and serious injury attributable to this fishery (CV in parentheses) was 0 between 1991 and 2000, 49 (CV=1.10) in 2001, and 0 in 2002-2004, and 0 in 2006–2008. Estimates have not been generated for 2005 or 2009.

| Table 2b. Summary of the incidental mortality of harp seal (Pagophilus groenlandicus) by commercial fishery including the years sampled (Years), the type of data used (Data Type), the annual observer coverage (Observer Coverage), the mortalities recorded by on-board observers (Observed Mortality), the estimated annual mortality (Estimated Mortality), the estimated CV of the annual mortality (Estimated CVs) and the mean annual mortality (CV in parentheses). |
|---|--------|----------------|---------------|----------------|----------------|----------------|
| Fishery | Years | Data Type | Observer Coverage | Observed Mortality | Estimated Mortality | Estimated CVs |
| Northeast Sink Gillnet | 05-09 | Obs. Data, Trip Logbook, Allocated Dealer Data | .07, .04, .07, .05, .04 | 3, 3, 11, 14, 32 | 35, 65, 119, 238, 415 | .68, .66, .35, .38, .27 | 174 (0.18) |
| Mid-Atlantic Gillnet | 05-09 | Obs. Data, Trip Logbook, Allocated Dealer Data | .03, .04, .05, .03, .03 | 0, 0, 1, 4, 3 | 0, 0, 38, 176, 70 | 0, 0, 0, 9, .74, .67 | 57 (0.5) |
| Northeast Bottom Trawl | 05-09 | Obs. Data Weighout | .12, .06, .06, .08, .09 | 3, 0, 0, 0, 1 | unk, 0, 0, unk | unk, 0, 0, 0, unk | unk |
| TOTAL | | | | | | | 231 (0.18) |

a. Observer data (Obs. Data) are used to measure bycatch rates, and the data are collected within the Northeast Fisheries Observer Program. The Northeast Fisheries Observer Program collects landings data (Weighout) and total landings are used as a measure of total effort for the sink gillnet fishery. Mandatory logbook (Logbook) data are used to determine the spatial distribution of fishing effort in the Northeast sink gillnet fishery.

b. The observer coverages for the Northeast sink gillnet fishery and the mid-Atlantic coastal sink gillnet fisheries are ratios based on tons of fish landed. North Atlantic bottom trawl fishery coverages are ratios based on trips.

c. Since 1998, takes from pingered and non-pingered nets within a marine mammal time/area closure that required pingers, and takes from pingered and non-pingered nets not within a marine mammal time/area closure were pooled. The pooled bycatch rate was weighted by the total number of samples taken from the stratum and used to estimate the mortality. In 2000-2009, respectively, 2, 1, 0, 0, 4, 0, 3, 0, 3, and 4 takes were observed in nets with pingers. In 2000-2009, respectively, 1, 0, 0, 0, 11, 3, 0, 12, 15 and 28 takes were observed in nets without pingers.

d. Bycatch estimates attributed to the Northeast bottom trawl fishery have not been generated.

e. Nine harp seals were incidentally caught as part of a NEFSC hanging ratio study to examine the impact of gillnet hanging ratio on harbor porpoise bycatch. These animals were included in the observed interactions and added to the total estimates, though these interactions and their associated fishing effort were not included in bycatch rate calculations.

Other Mortality

Canada: Harp seals have been commercially hunted since the mid-1800s in the Canadian Atlantic (Stenson 1993).
A total allowable catch (TAC) of 200,000 harp seals was set for the large vessel hunt in 1971. The TAC varied until 1982 when it was set at 186,000 seals and remained at this level through 1995 (Stenson 1993; ICES 1998). The TAC was increased to 250,000 and 275,000, respectively, in 1996 and 1997 (ICES 1998). The 1997 TAC remained in effect through 2002. In 2003, a three-year TAC was set at 975,000 with a maximum of 350,000 allowed in the first two years (ICES 2008). As a result of catches in the first two years the 2005 TAC was set at 319,517 (ICES 2008). The 2006 TAC was increased to 335,000 (325,000 commercial hunt, 6,000 Aboriginal initiative, and 2,000 allocation each for personal use and Arctic catches). The TAC was reduced to 270,000 in 2007 (263,140 commercial hunt, 4,860 for Aboriginal, and 2,000 for personal use) (ICES 2008). In 2008 the TAC was increased to 275,000 (268,050 commercial hunt, 4,950 for Aboriginal, and 2,000 for personal use). In 2009 the TAC was 280,000, and in 2010 it was 330,000.

U.S.: From 2005 to 2009, 511 harp seal stranding mortalities were reported (Table 3; NMFS unpublished data). Twenty-two (4.3%) of the mortalities during this five-year period showed signs of human interaction (5 in 2005, 2 in 2006, 6 in 2007, 3 in 2008, and 6), with 5 having some sign of fishery interaction (1 each in 2005, 2007 and 2008 and 2 in 2009)). However, the cause of death of stranded animals is not being evaluated (interactions may be non-fatal or even post-mortem) and is not included in annual human-induced mortality estimates. Harris and Gupta (2006) analyzed NMFS 1996-2002 stranding data and suggest that the distribution of harp seal strandings in the Gulf of Maine is consistent with the species’ seasonal migratory patterns in this region.

Table 3. Harp seal (*Pagophilus groenlandicus*) stranding mortalities* along the U.S. Atlantic coast (2005-2009) with subtotals of animals recorded as pups in parentheses.

<table>
<thead>
<tr>
<th>State</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME</td>
<td>10</td>
<td>14</td>
<td>8</td>
<td>15</td>
<td>9</td>
<td>56</td>
</tr>
<tr>
<td>NH</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>MA</td>
<td>44</td>
<td>24</td>
<td>51 (2)</td>
<td>51</td>
<td>59 (2)</td>
<td>229</td>
</tr>
<tr>
<td>RI</td>
<td>9</td>
<td>6</td>
<td>2</td>
<td>5</td>
<td>9</td>
<td>31</td>
</tr>
<tr>
<td>CT</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td>NY</td>
<td>41</td>
<td>15</td>
<td>19 (1)</td>
<td>8</td>
<td>29</td>
<td>112</td>
</tr>
<tr>
<td>NJ</td>
<td>12</td>
<td>3 (1)</td>
<td>3</td>
<td>12</td>
<td>5</td>
<td>35</td>
</tr>
<tr>
<td>DE</td>
<td>2 (1)</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>MD</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>VA</td>
<td>4</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>NC</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>129</td>
<td>67</td>
<td>96</td>
<td>98</td>
<td>121</td>
<td>511</td>
</tr>
</tbody>
</table>

Unspecified seals (all states) | 59 | 46 | 34 | 51 | 34 | 224 |

a. Mortalities include animals found dead and animals that were euthanized, died during handling, or died in the transfer to, or upon arrival at, rehab facilities.

STATUS OF STOCK

The status of the harp seal stock, relative to OSP, in the U.S. Atlantic EEZ is unknown, but the stock’s abundance appears to have stabilized. The species is not listed as threatened or endangered under the Endangered Species Act. The total U.S. fishery-related mortality and serious injury for this stock is very low relative to the stock size and can be considered insignificant and approaching zero mortality and serious injury rate. The level of human-caused mortality and serious injury in the U.S. Atlantic EEZ is also low relative to the total stock size; therefore, this is not a strategic stock.
REFERENCES CITED

Schnaittacher G. 2011. The effects of hanging ratio on marine mammal interactions and catch retention of commercially important finfish species [Final report: 28 p. NOAA Contract No. EA133F-08-CN-0240]

BRYDE'S WHALE (Balaenoptera edeni):
Northern Gulf of Mexico Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

Bryde's whales are distributed worldwide in tropical and sub-tropical waters. In the western Atlantic Ocean, Bryde's whales are reported from off the southeastern United States and the southern West Indies to Cabo Frio, Brazil (Leatherwood and Reeves 1983). Most of the sighting records of Bryde's whales in the northern Gulf of Mexico (i.e., U.S. Gulf of Mexico) are from NMFS abundance surveys that were conducted during the spring (Figure 1; Hansen et al. 1995, 1996; Mullin and Hoggard 2000; Mullin and Fulling 2004; Maze-Foley and Mullin 2006). However, there are stranding records from throughout the year (Würsig et al. 2000).

It has been postulated that the Bryde's whales found in the northern Gulf of Mexico may represent a resident stock (Schmidly 1981; Leatherwood and Reeves 1983), but there is no information on stock differentiation. The Gulf of Mexico population is provisionally being considered a separate stock for management purposes, although there is currently no information to differentiate this stock from the Atlantic Ocean stock(s). Additional morphological, genetic, and/or behavioral data are needed to provide further information on stock delineation.

POPULATION SIZE

The best abundance estimate available for northern Gulf of Mexico Bryde’s whales is 15 (CV=1.98) (Mullin 2007; Table 1). This estimate is pooled from summer 2003 and spring 2004 oceanic surveys covering waters from the 200-m isobath to the seaward extent of the U.S. Exclusive Economic Zone (EEZ).

Earlier abundance estimates

Estimates of abundance were derived through the application of distance sampling analysis (Buckland et al. 2001) and the computer program DISTANCE (Thomas et al. 1998) to sighting data.

From 1991 through 1994, line-transect vessel surveys were conducted in conjunction with bluefin tuna ichthypolankton surveys during spring in the northern Gulf of Mexico from the 200-m isobath to the seaward extent of the U.S. EEZ (Hansen et al. 1995). Annual cetacean surveys were conducted along a fixed plankton-sampling trackline. Survey effort-weighted estimated average abundance of Bryde’s whales for all surveys combined from 1991 through 1994 was 35 (CV=1.10) (Hansen et al. 1995; Table 1).

Similar surveys were conducted during spring from 1996 to 2001 (excluding 1998) in oceanic waters of the northern Gulf of Mexico. Due to limited survey effort in any given year, survey effort was pooled across all years to develop an average abundance estimate. The estimate of abundance for Bryde’s whales in oceanic waters, pooled from 1996 to 2001, was 40 (CV=0.61) (Mullin and Fulling 2004; Table 1).

Recent surveys and abundance estimates

During summer 2003 and spring 2004, line-transect surveys dedicated to estimating the abundance of oceanic cetaceans were conducted in the northern Gulf of Mexico. During each year, a grid of uniformly-spaced transect lines from a random start was surveyed from the 200-m isobath to the seaward extent of the U.S. EEZ using NOAA
Ship *Gordon Gunter* (Mullin 2007).

As recommended in the GAMMS Workshop Report (Wade and Angliss 1997), estimates older than 8 years are deemed unreliable, and therefore should not be used for PBR determinations. Because most of the data for estimates prior to 2003 were older than this 8-year limit and due to the different sampling strategies, estimates from the 2003 and 2004 surveys were considered most reliable. The estimate of abundance for Bryde’s whales in oceanic waters, pooled from 2003 to 2004, was 15 (CV=1.98) (Mullin 2007; Table 1), which is the best available abundance estimate for this species in the northern Gulf of Mexico.

<table>
<thead>
<tr>
<th>Month/Year</th>
<th>Area</th>
<th>N_{best}</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apr-Jun 1991-1994</td>
<td>Oceanic waters</td>
<td>35</td>
<td>1.10</td>
</tr>
<tr>
<td>Apr-Jun 1996-2001 (excluding 1998)</td>
<td>Oceanic waters</td>
<td>40</td>
<td>0.61</td>
</tr>
<tr>
<td>Jun-Aug 2003, Apr-Jun 2004</td>
<td>Oceanic waters</td>
<td>15</td>
<td>1.98</td>
</tr>
</tbody>
</table>

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normal distributed abundance estimate. This is equivalent to the 20th percentile of the log-normal distributed abundance estimate as specified by Wade and Angliss (1997). The best estimate of abundance for Bryde’s whales is 15 (CV=1.98). The minimum population estimate for the northern Gulf of Mexico is 5 Bryde’s whales.

Current Population Trend

There are insufficient data to determine the population trends for this stock. The pooled abundance estimate for 2003-2004 of 15 (1.98) and that for 1996-2001 of 40 (CV=0.61) are not significantly different (P=0.05) from each other but due to the imprecision of the estimates, the power to detect a difference is low. The abundance estimate for 1991-1994 was 35 (CV=1.09). These temporal abundance estimates are difficult to interpret without a Gulf of Mexico-wide understanding of Bryde’s whale abundance. The Gulf of Mexico is composed of waters belonging to the U.S., Mexico and Cuba. U.S. waters only comprise about 40% of the entire Gulf of Mexico, and 65% of oceanic waters are south of the U.S. EEZ. The oceanography of the Gulf of Mexico is quite dynamic, and the spatial scale of the Gulf is small relative to the ability of most cetacean species to travel. Studies based on abundance and distribution surveys restricted to U.S. waters are unable to detect temporal shifts in distribution beyond U.S. waters that might account for any changes in abundance.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04. This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential biological removal level (PBR) is the product of the minimum population size, one half the maximum net productivity rate and a recovery factor (MMPA Sec. 3.16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is 5. The maximum productivity rate is 0.04, the default value for cetaceans. The “recovery” factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP), is assumed to be 0.5 because the stock is of unknown status. PBR for the northern Gulf of Mexico Bryde’s whale is 0.1.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

Annual human-caused mortality and serious injury is unknown for this stock. There is no documented mortality or serious injury associated with commercial fishing. During 2009 there was 1 known Bryde’s whale mortality as a result of a ship strike. For the period 2005 through 2009, the minimum annual rate of human-caused mortality and serious injury to Bryde’s whales due to ship strikes was 0.2 per year. Detected mortalities should not be considered an unbiased representation of human-caused mortality. Detections are haphazard and not the result of a designed sampling scheme. As such they represent a minimum estimate of human-caused mortality which is almost certainly
biased low.

Fisheries Information

The level of past or current, direct, human-caused mortality of Bryde’s whales in the northern Gulf of Mexico is unknown. Pelagic swordfish, tunas and billfish are the targets of the longline fishery operating in the northern Gulf of Mexico. There has been no reported fishing-related mortality or serious injury of a Bryde’s whale by this fishery during 1998-2009 (Yeung 1999; Yeung 2001; Garrison 2003; Garrison and Richards 2004; Garrison 2005; Fairfield Walsh and Garrison 2006; Fairfield-Walsh and Garrison 2007; Fairfield and Garrison 2008; Garrison et al. 2009; Garrison and Stokes 2010).

Other Mortality

During 2009 a Bryde’s whale was found floating in the Port of Tampa (Florida). The whale had evidence of premortem and postmortem blunt trauma, and was determined to have been struck by a ship, draped across the bow and carried into port. The whale was a lactating female and measured 12.65 m in length (NOAA National Marine Mammal Health and Stranding Response Database unpublished data, accessed 17 November 2010). There were no reported strandings of Bryde’s whales in the Gulf of Mexico during 1999-2005 nor during 2007-2008. One Bryde’s whale calf live-stranded in Sandestin, Florida, during November 2006. No evidence of human interaction was detected for this stranded animal (NOAA National Marine Mammal Health and Stranding Response Database unpublished data, accessed 17 November 2010). Stranding data probably underestimate the extent of human-caused mortality and serious injury because not all of the marine mammals which die or are seriously injured from human interactions wash ashore, not all that wash ashore are discovered, reported or investigated, nor will all of those that do wash ashore necessarily show signs of vessel collision, entanglement or other fishery-interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of human interactions.

STATUS OF STOCK

The status of Bryde’s whales in the northern Gulf of Mexico, relative to OSP, is unknown. The species is not listed as threatened or endangered under the Endangered Species Act. There are insufficient data to determine the population trends for this stock. Total human-caused mortality and serious injury for this stock is not known but one human-caused mortality was documented during 2009. This is a strategic stock because the average annual human-caused mortality and serious injury exceeds PBR.

REFERENCES CITED

Hansen, L. J., K. D. Mullin and C. L. Roden. 1995. Estimates of cetacean abundance in the northern Gulf of Mexico from vessel surveys. Southeast Fisheries Science Center, Miami Laboratory, Contribution No. MIA-94/95-
25, 9 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.

BOTTLENOSE DOLPHIN (Tursiops truncatus truncatus):
Northern Gulf of Mexico Oceanic Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE
Thirty-seven stocks have been provisionally identified for northern Gulf of Mexico (i.e., U.S. Gulf of Mexico) bottlenose dolphins (Waring et al. 2001). Northern Gulf of Mexico inshore habitat has been separated into 32 bay, sound and estuarine stocks. Three northern Gulf of Mexico coastal stocks include nearshore waters from the shore to the 20m isobath. The northern Gulf of Mexico continental shelf stock encompasses waters from 20 to 200m deep. The northern Gulf of Mexico oceanic stock encompasses the waters from the 200m isobath to the seaward extent of the U.S. Exclusive Economic Zone (EEZ; Figure 1).

Both “coastal/nearshore” and “offshore” ecotypes of bottlenose dolphins (Mead and Potter 1995) occur in the Gulf of Mexico (LeDuc and Currie 1996) but the distribution of each is not known. The offshore and nearshore ecotypes are genetically distinct based on both mitochondrial and nuclear markers (Hoelzel et al. 1998). In the northwestern Atlantic Ocean, Torres et al. (2003) found a statistically significant break in the distribution of the ecotypes at 34km from shore. The offshore ecotype was found exclusively seaward of 34 km and in waters deeper than 34 m. The continental shelf is much wider in the Gulf of Mexico and these results may not apply. Ongoing research is aimed at defining these boundaries in the Gulf of Mexico.

Based on research currently being conducted on bottlenose dolphins in the northern Gulf of Mexico, as well as the western North Atlantic Ocean, the structure of these stocks is uncertain, but appears to be complex. The multi-disciplinary research programs conducted over the last 40 years (e.g., Wells 1994; Wells 2009) are beginning to shed light on stock structures of bottlenose dolphins, although additional analyses are needed before stock structures can be elaborated on in the northern Gulf of Mexico. As research is completed, it may be necessary to revise stocks of bottlenose dolphins in the northern Gulf of Mexico.

The northern Gulf of Mexico oceanic stock of bottlenose dolphins is provisionally being considered separate from the Atlantic Ocean stocks of bottlenose dolphins for management purposes. One line of evidence to support this decision comes from Baron et al. (2008), who found that Gulf of Mexico bottlenose dolphin whistles (collected from oceanic waters) were significantly different from those in the western North Atlantic Ocean (collected from continental shelf and oceanic waters) in duration, number of inflection points and number of steps.

POPULATION SIZE
The best abundance estimate available for the northern Gulf of Mexico oceanic stock of bottlenose dolphins is 3,708 (CV=0.42) (Mullin 2007; Table 1). This estimate is pooled from summer 2003 and spring 2004 oceanic surveys covering waters from the 200-m isobath to the seaward extent of the U.S. EEZ.
Earlier abundance estimates

Estimates of abundance were derived through the application of distance sampling analysis (Buckland et al. 2001) and the computer program DISTANCE (Thomas et al. 1998) to sighting data. Surveys were conducted in conjunction with bluefin tuna ichthyoplankton surveys during spring from 1996 to 2001 (excluding 1998) in oceanic waters of the northern Gulf of Mexico. Tracklines, which were perpendicular to the bathymetry, covered the waters from 200m to the offshore extent of the U.S. EEZ. Due to limited survey effort in any given year, survey effort was pooled across all years to develop an average abundance estimate. The estimate of abundance for bottlenose dolphins in oceanic waters, pooled from 1996 to 2001, was 2,239 (CV=0.41) (Mullin and Fulling 2004; Table 1).

Recent surveys and abundance estimates

During summer 2003 and spring 2004, line-transect surveys dedicated to estimating the abundance of oceanic cetaceans were conducted in the northern Gulf of Mexico. During each year, a grid of uniformly-spaced transect lines from a random start were surveyed from the 200-m isobath to the seaward extent of the U.S. EEZ using NOAA Ship Gordon Gunter (Mullin 2007).

As recommended in the GAMMS Workshop Report (Wade and Angliss 1997), estimates older than 8 years are deemed unreliable, and therefore should not be used for PBR determinations. Because the data for estimates prior to 2003 were older than this 8-year limit, estimates from the 2003 and 2004 surveys were used. The estimate of abundance for bottlenose dolphins in oceanic waters, pooled from 2003 to 2004, was 3,708 (CV=0.42) (Mullin 2007; Table 1), which is the best available abundance estimate for this stock in the northern Gulf of Mexico.

<table>
<thead>
<tr>
<th>Month/Year</th>
<th>Area</th>
<th>N_{\text{best}}</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apr-Jun 1996-2001 (excluding 1998)</td>
<td>Oceanic waters</td>
<td>2,239</td>
<td>0.41</td>
</tr>
<tr>
<td>Jun-Aug 2003, Apr-Jun 2004</td>
<td>Oceanic waters</td>
<td>3,708</td>
<td>0.42</td>
</tr>
</tbody>
</table>

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normal distributed abundance estimate. This is equivalent to the 20th percentile of the log-normal distributed abundance estimate as specified by Wade and Angliss (1997). The best estimate of abundance for bottlenose dolphins is 3,708 (CV=0.42; Mullin 2007). The minimum population estimate for the northern Gulf of Mexico oceanic stock is 2,641 bottlenose dolphins.

Current Population Trend

There are insufficient data to determine the population trends for this stock. The pooled abundance estimate for 2003 to 2004 of 3,708 (CV=0.42) and that for 1996-2001 of 2,239 (CV=0.41) are not significantly different (P>0.05), but due to the imprecision of the estimates, the power to detect a difference is low. These temporal abundance estimates are difficult to interpret without a Gulf of Mexico-wide understanding of bottlenose dolphin abundance and stock structure. The Gulf of Mexico is composed of waters belonging to the U.S., Mexico and Cuba. U.S. waters only comprise about 40% of the entire Gulf of Mexico, and 65% of oceanic waters are south of the U.S. EEZ. The oceanography of the Gulf of Mexico is quite dynamic, and the spatial scale of the Gulf is small relative to the ability of most cetacean species to travel. Studies based on abundance and distribution surveys restricted to U.S. waters are unable to detect temporal shifts in distribution beyond U.S. waters that might account for any changes in abundance.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum productivity rates are unknown for this stock. For purposes of this assessment, the maximum productivity rate was assumed to be 0.04. This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential biological removal level (PBR) is the product of minimum population size, one-half the maximum
productivity rate and a recovery factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is 2,641. The maximum productivity rate is 0.04, the default value for cetaceans. The “recovery” factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP), is assumed to be 0.5 because the stock is of unknown status. PBR for the Gulf of Mexico oceanic bottlenose dolphin is 26.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

The estimated annual average fishery-related mortality or serious injury to this stock during 2005-2009 was 0.6 bottlenose dolphins (CV=1.0; Table 2).

Fisheries Information

The commercial fisheries which potentially could interact with this stock in the Gulf of Mexico are the Atlantic Ocean, Caribbean, Gulf of Mexico large pelagic longline fishery and the Gulf of Mexico butterfly trawl fishery (Appendix III). The level of past or current, direct, human-caused mortality of bottlenose dolphins in the Gulf of Mexico is unknown; however, interactions between bottlenose dolphins and fisheries have been observed in the Gulf of Mexico.

Pelagic swordfish, tunas and billfish are the targets of the longline fishery operating in the northern Gulf of Mexico. One bottlenose dolphin serious injury was observed in the pelagic longline fishery in 1998, and estimated serious injuries attributable to the pelagic longline fishery in the Gulf of Mexico region during quarter 1 of that year were 22 (CV=1.00; Yeung 1999). There were no reports of mortality or serious injury to bottlenose dolphins by this fishery in the northern Gulf of Mexico during 1999-2008 (Yeung 1999; Yeung 2001; Garrison 2003; Garrison and Richards 2004; Garrison 2005; Fairfield Walsh and Garrison 2006; Fairfield Walsh and Garrison 2007; Fairfield and Garrison 2008; Garrison et al. 2009). However, during 2009, 1 serious injury of a bottlenose dolphin was observed during the second quarter and estimated serious injuries attributable to the pelagic longline fishery in the Gulf of Mexico region during quarter 2 were 3.1 (CV=1.00; Garrison and Stokes 2010). The total estimated serious injury for 2009 was 3.1 animals (CV=1.0). The annual average serious injury and mortality attributable to the Gulf of Mexico pelagic longline fishery for the 5-year period from 2005 to 2009 was 0.6 animals (CV=1.0; Table 2). During 2007, 1 bottlenose dolphin was observed entangled and released alive in the northern Gulf of Mexico. All gear was removed and the animal was presumed to have no serious injuries. All of these interactions with the pelagic longline fishery could have included bottlenose dolphins from either the continental shelf and/or oceanic stocks.

A trawl fishery for butterflyfish was monitored by NMFS observers for a short period in the 1980’s with no records of incidental take of marine mammals (Burn and Scott 1988; NMFS unpublished data), although an experimental set by NMFS resulted in the death of 2 bottlenose dolphins (Burn and Scott 1988). There are no other data available with regard to this fishery.

<table>
<thead>
<tr>
<th>Fishery</th>
<th>Years</th>
<th>Data Type</th>
<th>Observer Coverage</th>
<th>Observed Serious Injury</th>
<th>Observed Mortality</th>
<th>Estimated Serious Injury</th>
<th>Estimated Mortality</th>
<th>Estimated Combined Mortality</th>
<th>Estimated CVs</th>
<th>Mean Annual Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pelagic Longline</td>
<td>05-09</td>
<td>Obs. Data Logbook</td>
<td>.07, .08, .15, .25, .21</td>
<td>0, 0, 0, 0, 1</td>
<td>0, 0, 0, 0, 0, 3</td>
<td>0, 0, 0, 0, 0</td>
<td>0, 0, 0, 0, 0, 3</td>
<td>NA, NA, NA, NA, 1.0</td>
<td>0.6 (1.0)</td>
<td></td>
</tr>
</tbody>
</table>

* Mandatory logbook data were used to measure total effort for the longline fishery. These data are collected at the Southeast Fisheries Science Center (SEFSC).

Other Mortality

A total of 1,274 bottlenose dolphins were found stranded in the northern Gulf of Mexico from 2005 through 2009 (NOAA National Marine Mammal Health and Stranding Response Database unpublished data, accessed 17 November 2010). Of these, 88 showed evidence of human interactions (e.g., gear entanglement, mutilation, gunshot
wounds). The vast majority of stranded bottlenose dolphins are assumed to belong to one of the coastal stocks or to bay, sound and estuary stocks. Nevertheless, it is possible that some of the stranded bottlenose dolphins belonged to the continental shelf or oceanic stocks and that they were among those strandings with evidence of human interactions. (Strandings do occur for other cetacean species whose primary range in the Gulf of Mexico is outer continental shelf or oceanic waters.)

The use of explosives to remove oil rigs in portions of the continental shelf in the western Gulf of Mexico has the potential to cause serious injury or mortality to marine mammals. These activities have been closely monitored by NMFS observers since 1987 (Gitschlag and Herczeg 1994). There have been no reports of either serious injury or mortality to bottlenose dolphins in the oceanic Gulf of Mexico associated with these activities (NMFS unpublished data).

STATUS OF STOCK

The status of bottlenose dolphins, relative to OSP, in the northern Gulf of Mexico oceanic waters is unknown. The species is not listed as threatened or endangered under the Endangered Species Act. There are insufficient data to determine the population trends for this stock. Total human-caused mortality and serious injury for this stock is not known. There is insufficient information available to determine whether the total fishery-related mortality and serious injury for this stock is insignificant and approaching zero mortality and serious injury rate. This is not a strategic stock because it is assumed that the average annual human-related mortality and serious injury does not exceed PBR.

REFERENCES CITED

BOTTLENOSE DOLPHIN (*Tursiops truncatus truncatus*): Northern Gulf of Mexico Bay, Sound, and Estuary Stocks

NOTE – NMFS is in the process of writing individual stock assessment reports for each of the 32 bay, sound and estuary stocks of bottlenose dolphins that are included in this report. Until this effort is completed and this report is replaced by 32 individual reports, basic information for all individual bay, sound and estuary stocks will remain in this report: “Northern Gulf of Mexico Bay, Sound and Estuary Stocks”.

STOCK DEFINITION AND GEOGRAPHIC RANGE

Bottlenose dolphins are distributed throughout the bays, sound and estuaries of the Gulf of Mexico (Mullin 1988). The identification of biologically-meaningful “stocks” of bottlenose dolphins in these waters is complicated by the high degree of behavioral variability exhibited by this species (Shane 1986; Wells and Scott 1999; Wells 2003), and by the lack of requisite information for much of the region.

Distinct stocks are provisionally identified in each of 32 areas of contiguous, enclosed or semi-enclosed bodies of water adjacent to the northern Gulf of Mexico (i.e., U.S. Gulf of Mexico) (Table 1, based on descriptions of relatively discrete dolphin “communities” in some of these areas). A “community” includes resident dolphins that regularly share large portions of their ranges, exhibit similar distinct genetic profiles, and interact with each other to a much greater extent (>50% of associations) than with dolphins in adjacent waters. The term, as adapted from Wells *et al.* (1987) and applied in part by Urian *et al.* (2009), emphasizes geographic, genetic and social relationships of dolphins. Bottlenose dolphin communities do not constitute closed demographic populations, as individuals from adjacent communities are known to interbreed. Nevertheless, the geographic nature of these areas and long-term, multi-generational stability of residency patterns suggest that many of these communities exist as functioning units of their ecosystems, and under the Marine Mammal Protection Act must be maintained as such. Also, the stable patterns of residency observed within communities suggest that long periods would be required to repopulate the home range of a community if it were eradicated or severely depleted. Thus, in the absence of information supporting management on a larger scale, it is appropriate to adopt a risk-averse approach and focus management efforts at the level of the community rather than at some larger demographic scale. Biological support for this risk-averse approach derives from several sources. Long-term (year-round, multi-year) residency by at least some individuals has been reported from nearly every site where photographic identification or tagging studies have been conducted in the Gulf of Mexico. In Texas, some of the dolphins in the Matagorda-Espiritu Santo Bay area (Gruber 1981; Lynn and Würsig 2002), Aransas Pass (Shane 1977; Weller 1998), San Luis Pass (Maze and Würsig 1999; Irwin and Würsig 2004), and Galveston Bay (Bräger 1993; Bräger *et al.* 1994; Fertl 1994) have been reported as long-term residents. Hubard *et al.* (2004) reported sightings of dolphins tagged 12-15 years previously in Mississippi Sound. In Florida, long-term residency has been reported from Choctawhatchee Bay (1899-1993; F. Townsend, unpublished data), Tampa Bay (Wells 1986a; Wells *et al.* 1996b; Urian *et al.* 2009), Sarasota Bay (Irving and Wells 1972; Irving *et al.* 1981; Wells 1986a; Wells *et al.* 1987; Scott *et al.* 1990; Wells 1991; 2003), Lemon Bay (Wells *et al.* 1996a) and Charlotte Harbor/Pine Island Sound (Shane 1990; Wells *et al.* 1996a; Wells *et al.* 1997; Shane 2004). In Louisiana, Miller (2003) concluded the bottlenose dolphin population in the Barataria Basin was relatively closed. In many cases, residents emphasize use of the bay, sound or estuary waters, with limited movements through passes to the Gulf of Mexico (Shane 1977; 1990; Gruber 1981; Irving *et al.* 1981; Maze and Würsig 1999; Lynn and Würsig 2002; Fazioli *et al.* 2006). These habitat use patterns are reflected in the ecology of the dolphins in some areas; for example, residents of Sarasota Bay, Florida, lacked squid in their diet, unlike non-resident dolphins stranded on nearby Gulf beaches (Barros and Wells 1998).

Genetic data also support the concept of relatively discrete bay, sound and estuary stocks. Analyses of mitochondrial DNA haplotype distributions indicate the existence of clinal variations along the Gulf of Mexico coastline (Duffield and Wells 2002). Differences in reproductive seasonality from site to site also suggest genetic-based distinctions between communities (Urian *et al.* 1996). Mitochondrial DNA analyses suggest finer-scale structural levels as well. For example, Matagorda Bay, Texas, dolphins appear to be a localized population, and differences in haplotype frequencies distinguish between adjacent communities in Tampa Bay, Sarasota Bay and Charlotte Harbor/Pine Island Sound, along the central west coast of Florida (Duffield and Wells 1991; 2002). Examination of protein electrophoretic data resulted in similar conclusions for the Florida dolphins (Duffield and Wells 1986). Additionally, Sellas *et al.* (2005) examined population subdivision among Sarasota Bay, Tampa Bay, Charlotte Harbor, Matagorda Bay, and the coastal Gulf of Mexico (1 – 12 km offshore) from just outside Tampa.
Bay to the south end of Lemon Bay, and found evidence of significant population structure among all areas on the basis of both mitochondrial DNA control region sequence data and 9 nuclear microsatellite loci. The Sellas et al. (2005) findings support the separate identification of bay, sound and estuary communities from those occurring in adjacent Gulf coastal waters.

The long-term structure and stability of at least some of these communities is exemplified by the residents of Sarasota Bay, Florida. This community has been observed since 1970 (Irvine and Wells 1972; Scott et al. 1990; Wells 1991; 2003). A span of at least 5 generations of identifiable residents currently inhabits the region, including some of those first identified in 1970. Maximum immigration and emigration rates of about 2-3% have been estimated (Wells and Scott 1990).

Genetic exchange occurs between resident communities; hence the application of the demographically and behaviorally-based term “community” rather than “population” (Wells 1986a; Sellas et al. 2005). Some of the calves in Sarasota Bay apparently have been sired by non-residents (Duffield and Wells 2002). A variety of potential exchange mechanisms occur in the Gulf. Small numbers of inshore dolphins travelling between regions have been reported, with patterns ranging from travelling through adjacent communities (Wells 1986b; Wells et al. 1996a; 1996b) to movements over distances of several hundred km in Texas waters (Gruber 1981; Lynn and Würsig 2002).

In many areas year-round residents co-occur with non-resident dolphins, providing potential opportunities for genetic exchange. About 14-17% of group sightings involving resident Sarasota Bay dolphins include at least 1 non-resident as well (Wells et al. 1987; Fazioli et al. 2006). Similar mixing of inshore residents and non-residents has been seen off San Luis Pass, Texas (Maze and Würsig 1999), the Cedar Keys, Florida (Quintana-Rizzo and Wells 2001), and Pine Island Sound, Florida (Shane 2004). Non-residents exhibit a variety of patterns, ranging from apparent nomadism recorded as transience in a given area, to apparent seasonal or non-seasonal migrations. Passes, especially the mouths of the larger estuaries, serve as mixing areas. For example, several communities mix at the mouth of Tampa Bay, Florida (Wells 1986a), and most of the dolphins identified in the mouths of Galveston Bay and Aransas Pass, Texas, were considered transients (Henningsen 1991; Bräger 1993; Weller 1998).

Seasonal movements of dolphins into and out of some of the bays, sounds and estuaries provide additional opportunities for genetic exchange with residents, and complicate the identification of stocks in coastal and inshore waters. In small bay systems such as Sarasota Bay, Florida, and San Luis Pass, Texas, residents move into Gulf coastal waters in fall/winter, and return inshore in spring/summer (Irvine et al. 1981; Maze and Würsig 1999). In larger bay systems, seasonal changes in abundance suggest possible migrations, with increases in more northerly bay systems in summer, and in more southerly systems in winter. Fall/winter increases in abundance have been noted for Tampa Bay (Scott et al. 1989) and Charlotte Harbor/Pine Island Sound (Thompson 1981; Scott et al. 1989), and are thought to occur in Matagorda Bay (Gruber 1981; Lynn and Würsig 2002) and Aransas Pass (Shane 1977; Weller 1998). Spring/summer increases in abundance occur in Mississippi Sound (Hubard et al. 2004) and are thought to occur in Galveston Bay (Henningsen 1991; Bräger 1993; Fertl 1994).

Spring and fall increases in abundance have been reported for St. Joseph Bay, Florida, where recent mark-recapture photo-identification surveys and 2 NOAA-sponsored health assessments were conducted during 2005-2006. Mark-recapture abundance estimates were highest in spring and fall and lowest in summer and winter (Table 1; Balmer et al. 2008). Individuals with low site-fidelity indices were sighted more often in spring and fall, whereas individuals sighted during summer and winter displayed higher site-fidelity indices. In conjunction with health assessments, 23 dolphins were radio tagged during April 2005 and July 2006. Dolphins tagged in spring 2005 displayed variable utilization areas and variable site fidelity patterns. In contrast, during summer 2006 the majority of radio tagged individuals displayed similar utilization areas and moderate to high site-fidelity patterns. The results of the studies suggest that during summer and winter St. Joseph Bay hosts dolphins that spend most of their time within this region, and these may represent a resident community. In spring and fall, St. Joseph Bay is visited by dolphins that range outside of this area (Balmer et al. 2008).

Much uncertainty remains regarding the structure of bottlenose dolphin stocks in many of the Gulf of Mexico bays, sounds and estuaries. Given the apparent co-occurrence of resident and non-resident dolphins in these areas, and the demonstrated variations in abundance, it appears that consideration should be given to the existence of a complex of stocks, and to the roles of bays, sounds and estuaries for stocks emphasizing Gulf of Mexico coastal waters. A starting point for management strategy should be the protection of the long-term resident communities, with their multi-generational geographic, genetic, demographic and social stability. These localized units would be at greatest risk from geographically-localized impacts. Complete characterization of many of these basic units would benefit from additional photo-identification, telemetry and genetic research (Wells 1994).

The current provisional stocks follow the designations in Table 1. As information becomes available, combination or division of these provisional stocks may be warranted. For example, unpublished research suggests that Block B-21, Lemon Bay, can be subsumed under Charlotte Harbor, and B36, Caloosahatchee River, can be
considered a part of Pine Island Sound. Additionally, a number of geographically and socially distinct subgroupings of dolphins in regions such as Tampa Bay, Charlotte Harbor, Pine Island Sound, Aransas Pass and Matagorda Bay have been identified, but the importance of these distinctions to stock designations remains undetermined (Shane 1977; Gruber 1981; Wells et al. 1996a; 1996b; 1997; Lynn and Würsig 2002; Urian 2002). For Tampa Bay, Urian et al. (2009) recently described fine-scale population structuring into 5 discrete communities (including the adjacent Sarasota Bay community) that differed in their social interactions and ranging patterns. Structure was found despite a lack of physiographic barriers to movement within this large, open embayment. Urian et al. (2009) further suggested that fine-scale structure may be a common element among populations of bottlenose dolphins in the southeast U.S. and recommended that management should account for fine-scale structure that exists within current stock designations.

Understanding the full complement of the stock complex using the bay, sound and estuary waters of the Gulf of Mexico will require much additional information. The development of biologically-based criteria to better define and manage stocks in this region should integrate multiple approaches, including studies of ranging patterns, genetics, morphology, social patterns, distribution, life history, stomach contents, isozyme analyses and contaminant concentrations. Spatially-explicit population modeling could aid in evaluating the implications of community-based stock definition. As these studies provide new information on what constitutes a bottlenose dolphin “biological stock,” current provisional definitions will likely need to be revised. As stocks are more clearly identified, it will be possible to conduct abundance estimates using standardized methodology across sites (thereby avoiding some of the previous problems of mixing results of aerial and boat-based surveys), identify fisheries and other human impacts relative to stocks and perform individual stock assessments. As recommended by the Atlantic Scientific Review Group (November 1998, Portland, Maine), an expert panel reviewed the stock structure for bottlenose dolphins in the Gulf of Mexico during a workshop in March 2000 (Hubard and Swartz 2002). The panel sought to describe the scope of risks faced by bottlenose dolphins in the Gulf of Mexico, and outline an approach by which the stock structure could most efficiently be investigated and integrated with data from previous and ongoing studies. The panel agreed that it was appropriate to use the precautionary approach and retain the stocks currently named until further studies are conducted, and made a variety of recommendations for future research (Hubard and Swartz 2002). As a result of this, efforts are being made to conduct research in new locations, such as the north central Gulf, in addition to the ongoing studies in Texas and Florida.

Table 1. Most recent bottlenose dolphin abundance (N\text{BEST}), coefficient of variation (CV) and minimum population estimate (N\text{MIN}) in northern Gulf of Mexico bays, sounds and estuaries. Because they are based on data collected more than 8 years ago, most estimates are considered unknown or undetermined for management purposes. Blocks refer to aerial survey blocks illustrated in Figure 1. PBR – Potential Biological Removal; UNK – unknown; UND – undetermined.

<table>
<thead>
<tr>
<th>Blocks</th>
<th>Gulf of Mexico Estuary</th>
<th>N\text{BEST}</th>
<th>CV</th>
<th>N\text{MIN}</th>
<th>PBR</th>
<th>Year</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>B51</td>
<td>Laguna Madre</td>
<td>80</td>
<td>1.57</td>
<td>UNK</td>
<td>UND</td>
<td>1992</td>
<td>A</td>
</tr>
<tr>
<td>B52</td>
<td>Nueces Bay, Corpus Christi Bay</td>
<td>58</td>
<td>0.61</td>
<td>UNK</td>
<td>UND</td>
<td>1992</td>
<td>A</td>
</tr>
<tr>
<td>B50</td>
<td>Compano Bay, Aransas Bay, San Antonio Bay, Redfish Bay, Espiritu Santo Bay</td>
<td>55</td>
<td>0.82</td>
<td>UNK</td>
<td>UND</td>
<td>1992</td>
<td>A</td>
</tr>
<tr>
<td>B54</td>
<td>Matagorda Bay, Tres Palacios Bay, Lavaca Bay</td>
<td>61</td>
<td>0.45</td>
<td>UNK</td>
<td>UND</td>
<td>1992</td>
<td>A</td>
</tr>
<tr>
<td>B55</td>
<td>West Bay</td>
<td>32</td>
<td>0.15</td>
<td>UNK</td>
<td>UND</td>
<td>2000</td>
<td>E</td>
</tr>
<tr>
<td>B56</td>
<td>Galveston Bay, East Bay, Trinity Bay</td>
<td>152</td>
<td>0.43</td>
<td>UNK</td>
<td>UND</td>
<td>1992</td>
<td>A</td>
</tr>
<tr>
<td>B57</td>
<td>Sabine Lake</td>
<td>0\text{*}</td>
<td>-</td>
<td>UND</td>
<td></td>
<td>1992</td>
<td>A</td>
</tr>
<tr>
<td>B58</td>
<td>Calcasieu Lake</td>
<td>0\text{*}</td>
<td>-</td>
<td>UND</td>
<td></td>
<td>1992</td>
<td>A</td>
</tr>
<tr>
<td>B59</td>
<td>Vermilion Bay, West Cote Blanche Bay, Atchafalaya Bay</td>
<td>0\text{*}</td>
<td>-</td>
<td>UND</td>
<td></td>
<td>1992</td>
<td>A</td>
</tr>
<tr>
<td>B60</td>
<td>Terrebonne Bay, Timbalier Bay</td>
<td>100</td>
<td>0.53</td>
<td>UNK</td>
<td>UND</td>
<td>1993</td>
<td>A</td>
</tr>
<tr>
<td>B61</td>
<td>Barataria Bay*</td>
<td>138</td>
<td>0.08</td>
<td>UNK</td>
<td>UND</td>
<td>2001</td>
<td>D</td>
</tr>
<tr>
<td>B30</td>
<td>Mississippi River Delta</td>
<td>0\text{*}</td>
<td>-</td>
<td>UND</td>
<td></td>
<td>1993</td>
<td>A</td>
</tr>
<tr>
<td>B02-05, 29, 31</td>
<td>Mississippi Sound, Lake Borgne, Bay Boudreau</td>
<td>1,401</td>
<td>0.13</td>
<td>UNK</td>
<td>UND</td>
<td>1993</td>
<td>A</td>
</tr>
<tr>
<td>B06</td>
<td>Mobile Bay, Bonsecour Bay</td>
<td>122</td>
<td>0.34</td>
<td>UNK</td>
<td>UND</td>
<td>1993</td>
<td>A</td>
</tr>
<tr>
<td>B07</td>
<td>Perdido Bay</td>
<td>0\text{*}</td>
<td>-</td>
<td>UND</td>
<td></td>
<td>1993</td>
<td>A</td>
</tr>
</tbody>
</table>

143
<table>
<thead>
<tr>
<th>Stock Number</th>
<th>Location</th>
<th>CV</th>
<th>Range</th>
<th>Assignment</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>B08</td>
<td>Pensacola Bay, East Bay</td>
<td>33</td>
<td>0.80</td>
<td>UNK/UNK</td>
<td>1993</td>
</tr>
<tr>
<td>B09</td>
<td>Choctawhatchee Bay*</td>
<td>179</td>
<td>0.04</td>
<td>173/1.7</td>
<td>2007</td>
</tr>
<tr>
<td>B10</td>
<td>St. Andrew Bay</td>
<td>124</td>
<td>0.57</td>
<td>UNK/UNK</td>
<td>1993</td>
</tr>
<tr>
<td>B11</td>
<td>St. Joseph Bay*</td>
<td>146</td>
<td>0.18</td>
<td>126/1.3</td>
<td>2005-07</td>
</tr>
<tr>
<td>B12-13</td>
<td>St. Vincent Sound, Apalachicola Bay, St. George Sound</td>
<td>537</td>
<td>0.09</td>
<td>498/5.0</td>
<td>2008</td>
</tr>
<tr>
<td>B14-15</td>
<td>Apalachee Bay</td>
<td>491</td>
<td>0.39</td>
<td>UNK/UNK</td>
<td>1993</td>
</tr>
<tr>
<td>B16</td>
<td>Waccasassa Bay, Withlacoochee Bay, Crystal Bay</td>
<td>100</td>
<td>0.85</td>
<td>UNK/UNK</td>
<td>1994</td>
</tr>
<tr>
<td>B17</td>
<td>St. Joseph Sound, Clearwater Harbor</td>
<td>37</td>
<td>1.06</td>
<td>UNK/UNK</td>
<td>1994</td>
</tr>
<tr>
<td>B18-34</td>
<td>Tampa Bay</td>
<td>559</td>
<td>0.24</td>
<td>UNK/UNK</td>
<td>1994</td>
</tr>
<tr>
<td>B20, 35</td>
<td>Sarasota Bay, Little Sarasota Bay</td>
<td>160</td>
<td>na</td>
<td>160/1.6</td>
<td>2007</td>
</tr>
<tr>
<td>B21</td>
<td>Lemon Bay</td>
<td>0°</td>
<td>-</td>
<td>UNK/UNK</td>
<td>1994</td>
</tr>
<tr>
<td>B22-23</td>
<td>Pine Island Sound, Charlotte Harbor, Gasparilla Sound</td>
<td>209</td>
<td>0.38</td>
<td>UNK/UNK</td>
<td>1994</td>
</tr>
<tr>
<td>B36</td>
<td>Caloosahatchee River</td>
<td>0°</td>
<td>-</td>
<td>UNK/UNK</td>
<td>1985</td>
</tr>
<tr>
<td>B24</td>
<td>Estero Bay</td>
<td>104</td>
<td>0.67</td>
<td>UNK/UNK</td>
<td>1994</td>
</tr>
<tr>
<td>B25</td>
<td>Chokoloskee Bay, Ten Thousand</td>
<td>208</td>
<td>0.46</td>
<td>UNK/UNK</td>
<td>1994</td>
</tr>
<tr>
<td>B27</td>
<td>Whitewater Bay</td>
<td>242</td>
<td>0.37</td>
<td>UNK/UNK</td>
<td>1994</td>
</tr>
<tr>
<td>B28</td>
<td>Florida Keys (Bahia Honda to Key West)</td>
<td>29</td>
<td>1.00</td>
<td>UNK/UNK</td>
<td>1994</td>
</tr>
</tbody>
</table>

Notes:

a During earlier surveys (Scott et al. 1989), the range of seasonal abundances was as follows: B57, 0-2 (CV=0.38); B58, 0-6 (0.34); B59, 0-0; B30, 0-182 (0.14); B07, 0-0; B21, 0-15 (0.43); and B36, 0-0.
b Block not surveyed during surveys reported in Blaylock and Hoggard (1994).
c No CV because N_BEST was a direct count of known individuals.
* An individual stock assessment report is available for this stock.

Figure 1. Northern Gulf of Mexico bays and sounds. Each of the alpha-numerically designated blocks corresponds to 1 of the NMFS Southeast Fisheries Science Center logistical aerial survey areas listed in Table 1. The bottlenose dolphins inhabiting each bay and sound are considered to comprise a unique stock for purposes of this assessment.
POPULATION SIZE
Population size estimates for most of the stocks are greater than 8 years old and therefore the current population size for each of these stocks is considered unknown (Wade and Angliss 1997). Recent mark-recapture population size estimates are available for Choctawhatchee Bay, St. Joseph Bay and Apalachicola Bay, Florida, and a direct count is available for Sarasota Bay, Florida (Table 1). Previous population size for most other stocks (Table 1) was estimated from preliminary analyses of line-transect data collected during aerial surveys conducted in September-October 1992 in Texas and Louisiana; in September-October 1993 in Louisiana, Mississippi, Alabama and the Florida Panhandle (Blaylock and Hoggard 1994); and in September-November 1994 along the west coast of Florida (NMFS unpublished data). Standard line-transect perpendicular sighting distance analytical methods (Buckland et al. 1993) and the computer program DISTANCE (Laake et al. 1993) were used. Analyses are currently underway that should provide updated abundance estimates for Lemon Bay, Gasparilla Sound, Charlotte Harbor, and Pine Island Sound during 2011 (Wells, pers. comm.).

Minimum Population Estimate
The population size for all but 4 stocks is currently unknown and the minimum population estimates are given for those 4 stocks in Table 1. In most cases, the minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normally distributed abundance estimate. This is equivalent to the 20th percentile of the log-normal distribution as specified by Wade and Angliss (1997). The minimum population estimate was calculated for each block from the estimated population size and its associated coefficient of variation. Where the population size resulted from a direct count of known individuals, the minimum population size was identical to the estimated population size.

Current Population Trend
The data are insufficient to determine population trends for all of the Gulf of Mexico bay, sound and estuary bottlenose dolphin communities. Eleven unusual mortality events have occurred among portions of these dolphin communities between 1990 and 2008; however, it is not possible to accurately partition the mortalities between bay and coastal stocks, thus the impact of these mortality events on communities is not known.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES
Current and maximum net productivity rates are not known for the dolphin communities that constitute these stocks. While productivity rates may be estimated for individual females within communities, such estimates are confounded at the stock level due to the influx of dolphins from adjacent areas which balance losses, and the unexplained loss of some individuals which offset births and recruitment (Wells 1998). Continued monitoring and expanded survey coverage will be required to address and develop estimates of productivity for these dolphin communities. The maximum net productivity rate was assumed to be 0.04. This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL
Potential biological removal (PBR) is undetermined for most stocks because the population size estimate is more than 8 years old. PBR is the product of minimum population size, one-half the maximum productivity rate and a “recovery” factor (Wade and Angliss 1997). The “recovery” factor, which accounts for endangered, depleted, and threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP), is assumed to be 0.5 because these stocks are of unknown status. PBR for those stocks with population size estimates less than 8 years old is given in Table 1.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY
The total annual human-caused mortality and serious injury for these stocks during 2005-2009 is unknown.
Some of the bay, sound and estuary communities were the focus of a live-capture fishery for bottlenose dolphins which supplied dolphins to the U.S. Navy and to oceanaria for research and public display for more than 2 decades ending in 1989 (NMFS unpublished data). During the period 1972-1989, 490 bottlenose dolphins, an average of 29 dolphins annually, were removed from a few locations in the Gulf of Mexico, including the Florida Keys, Charlotte Harbor, Tampa Bay and elsewhere. Mississippi Sound sustained the highest level of removals with 202 dolphins taken from this stock during this period, representing 41% of the total and an annual average of 12 dolphins (compared to a previous PBR of 13). The annual average number of removals never exceeded previous
PBR levels, but it may be biologically significant that 73% of the dolphins removed during 1982-1988 were females. The impact of these removals on the stocks is unknown.

Fishery Information

The commercial fisheries which potentially could interact with these stocks in the Gulf of Mexico are the shrimp trawl, blue crab trap/pot, stone crab trap/pot, menhaden purse seine, and gillnet fisheries (Appendix III).

Shrimp Trawl Fishery

Historically, there have been very low numbers of incidental mortality or injury in the stocks associated with the shrimp trawl fishery. A voluntary observer program for the shrimp trawl fishery began in 1992 and became mandatory in 2007. Three bottlenose dolphin mortalities were observed in the shrimp trawl fishery. One mortality occurred in 2008 off the coast of Texas in the vicinity of Laguna Madre, 1 mortality occurred in 2007 off the coast of Louisiana in the vicinity of Atchafalaya Bay, and 1 mortality occurred in 2003 off the coast of Alabama near Mobile Bay. The Texas 2008 mortality could have belonged to the bottlenose dolphin Western Coastal Stock or Continental Shelf Stock. The Louisiana 2007 mortality could have belonged to the Western Coastal Stock or a bay, sound and estuary stock. The Alabama 2003 mortality could have belonged to the Northern Coastal Stock or a bay, sound and estuary stock.

Blue and Stone Crab Trap/Pot Fisheries

Bottlenose dolphins have been reported stranded with polypropylene rope around their flukes (NMFS 1991; McFee and Brooks, Jr. 1998; NMFS unpublished data), indicating the possibility of entanglement with crab pot lines. In 2002 there was a calf stranded near Clearwater, Florida, with blue crab trap line wrapped around its rostrum, through its mouth and looped around its tail. There was an additional unconfirmed report to the stranding network in 2002 of a dolphin entangled in a stone crab trap with the buoy still attached. The animal was reportedly cut loose from the trap and slowly swam off with the line and buoy still wrapped around it (NMFS unpublished data). In 2008 there was a report of a live dolphin in the Caloosahatchee River in Florida entangled in pot line without a buoy attached. This animal was likely a member of the Caloosahatchee River Stock (a bay, sound and estuary stock). In 2008, a dolphin likely belonging to the Western Coastal Stock was disentangled from crab trap gear in Texas from a concerned citizen and swam away with no reported injuries. Also in 2008, another dolphin off Florida likely belonging to the Eastern Coastal Stock, reportedly half the size of an adult, was disentangled by a county marine officer from a crab pot line and swam away with no reported injuries (NOAA National Marine Mammal Health and Stranding Response Database unpublished data, accessed 17 November 2010). Since there is no systematic observer program, it is not possible to estimate the total number of interactions or mortalities associated with crab traps/pots.

Menhaden Purse Seine Fishery

There are no recent observer program data for the Gulf of Mexico menhaden purse seine fishery but incidental mortality of bottlenose dolphins has been reported for this fishery (Reynolds 1985). Through the Marine Mammal Authorization Program, there have been 11 self-reported incidental takes (all mortalities) of bottlenose dolphins in northern Gulf of Mexico coastal and estuary waters by the menhaden purse seine fishery: 2 takes of single bottlenose dolphins were reported in Louisiana waters during 2005 (1 of the animals may have been dead prior to capture); 1 take of a single bottlenose dolphin was reported in Louisiana waters during 2004; 2 takes of single unidentified dolphins were reported during 2002 (1 in Mississippi and 1 in Louisiana waters); 1 take of a single bottlenose dolphin was reported in Louisiana waters during 2001; and 3 takes were reported in 2000, 2 of which were for single dolphins (1 bottlenose, 1 unidentified) in Louisiana waters and the third was for 3 bottlenose dolphins in a single purse seine in Mississippi waters. The menhaden purse seine fishery was observed to take 9 bottlenose dolphins (3 fatally) between 1992 and 1995 (NMFS unpublished data). During that period, there were 1,366 sets observed out of 26,097 total sets, which when extrapolated for all years suggests that as many as 172 bottlenose dolphins could have been taken in this fishery with up to 57 animals killed. Without an observer program it is not possible to obtain statistically reliable information for this fishery on the number of sets annually, the incidental take and mortality rates, and the communities from which bottlenose dolphins are being taken.

Gillnet Fishery

No marine mammal mortalities associated with gillnet fisheries have been reported in recent years, but stranding data suggest that gillnet and marine mammal interactions do occur, causing mortality and serious injury. Four research-related gillnet mortalities occurred between 2003 and 2007 in Texas and Louisiana and an additional
research gillnet entanglement occurred during 2008 in Texas (see “Other Mortality” below for details). In 1995, a Florida state constitutional amendment banned gillnets and large nets from bays, sounds, estuaries and other inshore waters.

Strandings

A total of 559 bottlenose dolphins were found stranded in bays, sounds and estuaries of the northern Gulf of Mexico from 2005 through 2009 (Table 2; NOAA National Marine Mammal Health and Stranding Response Database unpublished data, accessed 17 November 2010). Evidence of human interactions (e.g., gear entanglement, mutilation, gunshot wounds) was detected for 63 of these dolphins. Bottlenose dolphins are known to become entangled in, or ingest recreational and commercial fishing gear (Wells and Scott 1994; Gorzelany 1998; Wells et al. 1998; Wells et al. 2008), and some are struck by vessels (Wells and Scott 1997; Wells et al. 2008).

There are a number of difficulties associated with the interpretation of stranding data. Except in rare cases, such as Sarasota Bay, Florida, where residency can be determined, it is possible that some or all of the stranded dolphins may have been from a nearby coastal stock. However, the proportion of stranded dolphins belonging to another stock cannot be determined because of the difficulty of determining from where the stranded carcasses originated. Stranding data probably underestimate the extent of fishery-related mortality and serious injury because not all of the dolphins which die or are seriously injured in fishery interactions wash ashore, nor will all of those that do wash ashore necessarily show signs of entanglement or other fishery-interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interaction, and the condition of the carcass if badly decomposed can inhibit the interpretation of cause of death.

Since 1990, there have been 11 bottlenose dolphin die-offs in the northern Gulf of Mexico. From January through May 1990, a total of 367 bottlenose dolphins stranded in the northern Gulf of Mexico. Overall this represented a two-fold increase in the prior maximum recorded number of strandings for the same period, but in some locations (i.e., Alabama) strandings were 10 times the average number. The cause of the 1990 mortality event could not be determined (Hansen 1992). An unusual mortality event was declared for Sarasota Bay, Florida, in 1991, but the cause was not determined. In March and April 1992, 111 bottlenose dolphins stranded in Texas - about 9 times the average number. The cause of this event was not determined, but carbamates were a suspected cause.

In 1992, with the enactment of the Marine Mammal Health and Stranding Response Act, the Working Group on Marine Mammal Unusual Mortality Events was formalized to determine when an unusual mortality event (UME) is occurring, and then to direct responses to such events. Since 1992, 8 bottlenose dolphin UMES have been declared in the Gulf of Mexico. 1) In 1993-1994 an UME of bottlenose dolphins likely caused by morbillivirus started in the Florida Panhandle and spread west with most of the mortalities occurring in Texas (Lipscomb 1993; Lipscomb et al. 1994). From February through April 1994, 220 bottlenose dolphins were found dead on Texas beaches, of which 67 occurred in a single 10-day period. 2) In 1996 an UME was declared for bottlenose dolphins in Mississippi when 27 bottlenose dolphins stranded during November and December. The cause was not determined, but a *Tursiops truncatus* (red tide) bloom was suspected to be responsible. 3) Between August 1999 and May 2000, 152 bottlenose dolphins died coincident with *K. brevis* blooms and fish kills in the Florida Panhandle (additional strandings included 3 Atlantic spotted dolphins, *Stenella frontalis*, 1 Risso’s dolphin, *Grampus griseus*, 2 Blainville’s beaked whales, *Mesoplodon densirostris*, and 4 unidentified dolphins). 4) In March and April 2004, in another Florida Panhandle UME possibly related to *K. brevis* blooms, 105 bottlenose dolphins and 2 unidentified dolphins stranded dead (NMFS 2004). Although there was no indication of a *K. brevis* bloom at the time, high levels of brevetoxin were found in the stomach contents of the stranded dolphins (Flewelling et al. 2005). 5) In 2005, a particularly destructive red tide (*K. brevis*) bloom occurred off of central west Florida. Manatee, sea turtle, bird and fish mortalities were reported in the area in early 2005 and a manatee UME had been declared. Dolphin mortalities began to rise above the historical averages by late July 2005, continued to increase through October 2005, and were then declared to be part of a multi-species UME. The multi-species UME extended into 2006, and ended in November 2006. A total of 190 dolphins were involved, primarily bottlenose dolphins (plus strandings of 1 Atlantic spotted dolphin, *S. frontalis*, and 24 unidentified dolphins). The evidence suggests the effects of a red tide bloom contributed to the cause of this event. 6) A separate UME was declared in the Florida Panhandle after elevated numbers of dolphin strandings occurred in association with a *K. brevis* bloom in September 2005. Dolphin strandings remained elevated through the spring of 2006 and brevetoxin was again detected in the tissues of some of the stranded dolphins. Between September 2005 and April 2006 when the event was officially declared over, a total of 90 bottlenose dolphin strandings occurred (plus strandings of 3 unidentified dolphins). 7) During February and March of 2007 an event was declared for northeast Texas and western Louisiana involving 66 bottlenose dolphins. Decomposition prevented conclusive analyses on most carcasses. 8) During February and March of 2008 an additional event was declared in Texas involving 113 bottlenose dolphin strandings. Most of the animals recovered were in a decomposed
state. The investigation is closed and a direct cause could not be identified. However, there were numerous, co-occurring harmful algal bloom toxins detected during the time period of this UME which may have contributed to the mortalities (Fire et al., in press).

Table 2. Bottlenose dolphin strandings occurring in bays, sounds and estuaries in the northern Gulf of Mexico from 2005 to 2009, as well as number of strandings for which evidence of human interaction was detected and number of strandings for which it could not be determined (CBD) if there was evidence of human interaction. Data are from the NOAA National Marine Mammal Health and Stranding Response Database (unpublished data, accessed 17 November 2010). Please note human interaction does not necessarily mean the interaction caused the animal’s death. Please also note that this table does include strandings from Barataria Bay Estuarine System, Chocotawhatchee Bay and St. Joseph Bay Stocks. Finally, there were an additional 27 dolphins not included in this table that stranded either in bay, sound and estuary waters or in coastal waters that could not be assigned definitively to a stock due to bad location data. If/when the location data are resolved, the numbers below could increase.

<table>
<thead>
<tr>
<th>Stock</th>
<th>Category</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bay, Sound and Estuary</td>
<td>Total Stranded</td>
<td>140</td>
<td>165a</td>
<td>77</td>
<td>78</td>
<td>99b</td>
<td>559</td>
</tr>
<tr>
<td></td>
<td>Human Interaction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>---Yes</td>
<td>4</td>
<td>23</td>
<td>10</td>
<td>8</td>
<td>18</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>---No</td>
<td>31</td>
<td>36</td>
<td>15</td>
<td>17</td>
<td>10</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>---CBD</td>
<td>105</td>
<td>106</td>
<td>52</td>
<td>53</td>
<td>71</td>
<td>387</td>
</tr>
</tbody>
</table>

a Includes 2 mass stranding events in Florida (2 animals in July 2006, 3 animals in November 2006)
b Includes a mass stranding of 6 animals in Louisiana in June 2009

Other Mortality

Two dolphin research-related mortalities have occurred. During November 2002 in Sarasota Bay, Florida, a 35-year-old male died in a health assessment research project. The histopathology report stated that drowning was the cause of death. However, the necropsy revealed that the animal was in poor condition as follows: anemic, thin (ribs evident, blubber thin and grossly lacking lipid), no food in the stomach and little evidence of recent feeding in the digestive tract, vertebral fractures with muscle atrophy, with additional conditions present. This has been the only such loss during capture/release research conducted over a 40-year period on Florida’s central west coast. Another research-related mortality occurred during July 2006 in St. Joseph Bay, in the Florida Panhandle, during a NMFS health assessment research project to investigate a series of Unusual Mortality Events in the region. The animal became entangled deep in the capture net and was found dead during extrication of other animals from the net. The cause of death was determined to be asphyxiation.

During 2009 in Mobile Bay, Alabama, near the entrance to the Gulf of Mexico, a bottlenose dolphin mortality resulted from an entanglement in the lazy line of a trawl net during an educational trawling cruise operated by a marine science education and research laboratory. This animal likely belonged to the Mobile Bay and Bonsecour Bay Stock of bay, sound and estuary bottlenose dolphins.

As part of its annual coastal dredging program, the Army Corps of Engineers conducts sea turtle relocation trawling during hopper dredging as a protective measure for marine turtles. Five incidents have been documented in the Gulf of Mexico involving bottlenose dolphins and relocation trawling activities. Four of the incidents were mortalities, and 1 occurred during each of the following years: 2003, 2005, 2006 and 2007. It is likely that 2 of these animals belonged to the Western Coastal Stock (2005, 2007) and 2 animals belonged to bay, sound and estuary stocks (2003, 2006). An additional incident occurred during 2006 in which the dolphin became free during net retrieval and was observed swimming away normally. It is likely this animal belonged to a bay, sound and estuary stock. All of the mortalities were included in the stranding database and the 3 most recent are included in the appropriate stranding tables under “Yes” for Human Interaction.

Four mortalities resulted from gillnet entanglements in research gear off Texas and Louisiana during 2003, 2004, 2006 and 2007. Three of the mortalities were a result of fisheries sampling and research in Texas, and 1 mortality (2006) occurred during a gulf sturgeon research project in Louisiana. Additionally, in 2008, 1 dolphin was entangled in a fisheries research gillnet in Texas. The floatline was wrapped around the dolphin’s tail; the net released itself upon retrieval and the dolphin appeared in good condition as it swam away. All of these animals likely belonged to bay, sound and estuary stocks. The mortalities were included in the stranding database and the 2 most recent are included in Table 2 under “Yes” for Human Interaction.

The problem of dolphin depredation of fishing gear is increasing in Gulf of Mexico coastal and estuary waters. There have been 3 recent cases of fishermen illegally “taking” dolphins due to dolphin depredation of recreational
and commercial fishing gear. In 2006 a charter boat fishing captain was charged under the MMPA for shooting at a dolphin that was swimming around his catch in the Gulf of Mexico, off Panama City, Florida. In 2007 a second charter fishing boat captain was fined under the MMPA for shooting at a bottlenose dolphin that was attempting to remove a fish from his line in the Gulf of Mexico, off Orange Beach, Alabama. A commercial fisherman was indicted in November 2008 for throwing pipe bombs at dolphins off Panama City, Florida, and charged in March 2009 for “taking” dolphins with an explosive device.

Illegal feeding or provisioning of wild bottlenose dolphins has been documented in Florida, particularly near Panama City Beach in the Panhandle (Samuels and Bejder 2004) and in and near Sarasota Bay (Cunningham-Smith et al. 2006; Powell and Wells 2011), and also in Texas near Corpus Christi (Bryant 1994). Feeding wild dolphins is defined under the MMPA as a form of ‘take’ because it can alter their natural behavior and increase their risk of injury or death. Nevertheless, a high rate of uncontrolled provisioning was observed near Panama City Beach in 1998 (Samuels and Bejder 2004), and provisioning has been observed south of Sarasota Bay since 1990 (Cunningham-Smith et al. 2006; Powell and Wells 2011). There are emerging questions regarding potential linkages between provisioning and predation of recreational fishing gear and associated entanglement and ingestion of gear, which is increasing through much of Florida. During 2006, at least 2% of the long-term resident dolphins of Sarasota Bay died from ingestion of recreational fishing gear (Powell and Wells 2011). Swimming with wild bottlenose dolphins has also been documented. Near Panama City Beach, Samuels and Bejder (2004) concluded that dolphins were amenable to swimmers due to provisioning. Swimming with wild dolphins may cause harassment, and harassment is illegal under the MMPA.

As noted previously, bottlenose dolphins are known to be struck by vessels (Wells and Scott 1997). During 2005-2009, 11 stranded bottlenose dolphins (of 559 total strandings) showed signs of a boat collision (NOAA National Marine Mammal Health and Stranding Response Database unpublished data, accessed 17 November 2010). It is possible some of the instances were post-mortem collisions. In addition to vessel collisions, the presence of vessels may also impact bottlenose dolphin behavior in bays, sounds and estuaries. Nowacek et al. (2001) reported that boats pass within 100m of each bottlenose dolphin in Sarasota Bay once every 6 minutes on average, leading to changes in dive patterns and group cohesion. Buckstaff (2004) noted changes in communication patterns of Sarasota Bay dolphins when boats approached. Miller et al. (2008) investigated the immediate responses of bottlenose dolphins to “high-speed personal watercraft” (i.e., boats) in Mississippi Sound. They found an immediate impact on dolphin behavior demonstrated by an increase in traveling behavior and dive duration, and a decrease in feeding behavior for non-traveling groups. The findings suggested dolphins attempted to avoid high-speed personal watercraft. It is unclear whether short-term effects will result in long-term consequences like reduced health and viability of dolphins. Further studies are needed to determine the impacts throughout the Gulf of Mexico.

The nearshore habitat occupied by many of these stocks is adjacent to areas of high human population, and in some bays, such as Mobile Bay in Alabama and Galveston Bay in Texas, is highly industrialized. The area surrounding Galveston Bay, for example, has a coastal population of over 3 million people. More than 50% of all chemical products manufactured in the U.S. are produced there and 17% of the oil produced in the Gulf of Mexico is refined there (Henningsen and Würsig 1991). Many of the enclosed bays in Texas are surrounded by agricultural lands which receive periodic pesticide applications.

Concentrations of chlorinated hydrocarbons and metals were examined in conjunction with an anomalous mortality event of bottlenose dolphins in Texas bays in 1990 and found to be relatively low in most; however, some had concentrations at levels of possible toxicological concern (Varanasi et al. 1992). No studies to date have determined the amount, if any, of indirect human-induced mortality resulting from pollution or habitat degradation.

Analyses of organochlorine concentrations in the tissues of bottlenose dolphins in Sarasota Bay, Florida, have found that the concentrations found in male dolphins exceeded toxic threshold values that may result in adverse effects on health or reproductive rates (Schwacke et al. 2002). Studies of contaminant concentrations relative to life history parameters showed higher levels of mortality in first-born offspring, and higher contaminant concentrations in these calves and in primiparous females (Wells et al. 2005). While there are no direct measurements of adverse effects of pollutants on estuary dolphins, the exposure to environmental pollutants and subsequent effects on population health is an area of concern and active research.

STATUS OF STOCKS

The status of these stocks relative to OSP is unknown and this species is not listed as threatened or endangered under the Endangered Species Act. The occurrence of 11 unusual mortality events among bottlenose dolphins along the northern Gulf of Mexico coast since 1990 (NMFS unpublished data) is cause for concern; however, the effects of the mortality events on stock abundance have not yet been determined, in large part because it has not been possible to assign mortalities to specific stocks due to a lack of empirical information on stock identification.
The relatively high number of bottlenose dolphin deaths which occurred during the mortality events since 1990 suggests that some of these stocks may be stressed. Human-caused mortality and serious injury for each of these stocks is not known, but considering the evidence from stranding data (Table 2), the total fishery-related mortality and serious injury exceeds 10% of the total known PBR or previous PBR, and therefore, it is probably not insignificant and not approaching the zero mortality and serious injury rate. Because most of the stock sizes are currently unknown, but likely small and relatively few mortalities and serious injuries would exceed PBR, NMFS considers that each of these stocks is a strategic stock.

REFERENCES CITED

BOTTLENOSE DOLPHIN (Tursiops truncatus truncatus)
Barataria Bay Estuarine System Stock

NOTE – NMFS is in the process of writing individual stock assessment reports for each of the 32 bay, sound and estuary stocks of bottlenose dolphins in the Gulf of Mexico. Until this effort is completed and 32 individual reports are available, some of the basic information presented in this report will also be included in the report: “Northern Gulf of Mexico Bay, Sound and Estuary Stocks”.

STOCK DEFINITION AND GEOGRAPHIC RANGE

Bottlenose dolphins are distributed throughout the bays, sounds and estuaries of the Gulf of Mexico (Mullin 1988). Long-term (year-round, multi-year) residency by at least some individuals has been reported from nearly every site where photographic identification (photo-ID) or tagging studies have been conducted in the Gulf of Mexico (e.g., Irvine and Wells 1972; Shane 1977; Gruber 1981; Irvine et al. 1981; Wells 1986; Wells et al. 1987; Scott et al. 1990; Shane 1990; Wells 1991; Bräger 1993; Bräger et al. 1994; Fertl 1994; Wells et al. 1996a,b; Wells et al. 1997; Weller 1998; Maze and Würsig 1999; Lynn and Würsig 2002; Wells 2003; Hubard et al. 2004; Irwin and Würsig 2004; Shane 2004; Balmer et al. 2008; Urian et al. 2009). In many cases, residents predominantly use the bay, sound or estuary waters, with limited movements through passes to the Gulf of Mexico (Shane 1977; Shane 1990; Gruber 1981; Irvine et al. 1981; Shane 1990; Maze and Würsig 1999; Lynn and Würsig 2002; Fazioli et al. 2006). These early studies indicating year-round residency to bays in both the eastern and western Gulf of Mexico led to the delineation of 33 bay, sound and estuary stocks, including Barataria Bay, with the first stock assessment reports in 1995.

More recently, genetic data also support the concept of relatively discrete bay, sound and estuary stocks (Duffield and Wells 2002; Sellas et al. 2005). Sellas et al. (2005) examined population subdivision among Sarasota Bay, Tampa Bay, Charlotte Harbor, Matagorda Bay, Texas, and the coastal Gulf of Mexico (1-12 km offshore) from just outside Tampa Bay to the south end of Lemon Bay, and found evidence of significant population structure among all areas on the basis of both mitochondrial DNA control region sequence data and 9 nuclear microsatellite loci. The Sellas et al. (2005) findings support the identification of bay, sound and estuary communities distinct from those occurring in adjacent Gulf coastal waters. Differences in reproductive seasonality from site to site also suggest genetic-based distinctions among communities (Urian et al. 1996). Photo-ID and genetic data from several inshore areas of the southeastern United States also support the existence of resident estuarine animals and a differentiation between animals biopsied along the Atlantic coast and those biopsied within estuarine systems at the same latitude (Caldwell 2001; Gubbins 2002; Zolman 2002; Mazzoil et al. 2005; Litz 2007; Rosel et al. 2009; NMFS unpublished).

Figure 1. Geographic extent of the Barataria Bay Estuarine System (BBES) Stock, located on the coast of Louisiana. The borders are denoted by dashed lines.
Barataria Bay is a shallow (mean depth=2m) estuarine system located in central Louisiana. It is bounded in the west by Bayou Lafourche, in the east by the Mississippi River delta and in the south by the Grand Terre barrier islands. Barataria Bay is approximately 110 km in length and 50 km in width at its widest point where it opens into the Gulf of Mexico (Connor and Day 1987). This estuarine system is connected to the Gulf of Mexico by a series of passes: Caminada Pass, Barataria Pass, Pass Abel and Quatre Bayou Pass. It is fringed by a complex system of canals, bayous, small embayments and channels. Bay waters are turbid, and salinity varies widely from south to north with the more saline, tidally influenced portions in the south and lakes in the north (U.S. EPA 1999; Moretzsohn et al. 2010). Miller and Baltz (2009) reported salinity varied seasonally and averaged 22.77psu (practical salinity unit) in lower Barataria and Caminada Bays (data collected during dolphin sightings). Barataria Bay, in conjunction with the Timbalier-Terrebonne Bay system, has been selected as an estuary of national significance by the Environmental Protection Agency National Estuary Program. The bay is characterized by marshes and swamp forests which supply a nursery and breeding ground for migratory birds and a variety of commercially and recreationally important species, such as finfish, shellfish, alligators, songbirds, geese and ducks (U.S. EPA 1999; Moretzsohn et al. 2010). The Barataria basin also produces a significant part of U.S. petroleum resources and is an important commercial harbor. High industrial and commercial use of the area and human alteration have resulted in environmental degradation and habitat loss. The most serious environmental issues facing the estuarine system include loss of coastal wetlands, eutrophication, barrier island erosion, saltwater intrusion and introduction of toxic substances (Connor and Day 1987; Barras et al. 2003).

The Barataria Bay Estuarine System (BBES) Stock area includes Caminada Bay and Barataria Bay (Figure 1). During June 1999 – May 2002, Miller (2003) conducted boat-based, photo-ID surveys in lower Barataria and Caminada Bays. Dolphins were present year-round, and 133 individual dolphins were identified. One individual was sighted 6 times, but most individuals, 58%, were sighted only once. Using a fine-scale microhabitat approach, Miller and Baltz (2009) described foraging habitat of bottlenose dolphins in Barataria Bay. Significant differences in temperature, group size, season and turbidity differentiated foraging sites from non-foraging sites. Foraging was more often observed in waters 200-500 m from shore in 4-6 m depth and at salinity values of approximately 20psu. Additional study is needed to further describe the population of bottlenose dolphins inhabiting the BBES. The current stock boundary does not include any coastal waters outside of the barrier islands. Further research is needed to determine the degree to which dolphins of this stock utilize nearshore coastal waters outside Barataria Bay. This stock boundary is subject to change upon further study of dolphin residency patterns in estuarine waters of Louisiana. Information on the use of coastal waters will be important when considering exposure to coastal fisheries as estuarine animals that make use of nearshore coastal waters would be at risk of entanglement in fishing gear while moving along the coast.

Dolphins residing in the estuaries southeast of this stock between BBES and the Mississippi River mouth (Bastian Bay, Bay Coquette and West Bay) are not currently covered in any stock assessment report. There are insufficient data to determine whether animals in this region exhibit affiliation to the BBES stock or should be delineated as their own stock. Further research is needed to establish affinities of dolphins in this region. It should be noted that in this region during 2005-2009, 1 bottlenose dolphin was reported stranded in Bastian Bay. No evidence of human interactions was detected.

POPULATION SIZE

The total number of bottlenose dolphins residing within the BBES Stock is unknown. Miller (2003) conducted boat-based, photo-ID surveys in lower Barataria and Caminada Bays from June 1999 to May 2002. Miller (2003) identified 133 individual dolphins, and using closed-population unequal catchability models in program CAPTURE, produced an abundance estimate of 138-238 (128-297, 95% CI). Miller’s (2003) estimate covers a large portion of the area covered by the BBES stock; however, these data are considered expired due to being more than 8 years old.

Minimum Population Estimate

Present data are insufficient to calculate a minimum population estimate for the BBES Stock of bottlenose dolphins.

Current Population Trend

There are insufficient data to determine the population trends for this stock.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. The maximum net productivity rate was assumed to be 0.04. This value is based on theoretical modeling showing that cetacean populations may not
grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of the minimum population size, one-half the maximum productivity rate, and a “recovery” factor (MMPA Sec. 3, 16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size of the BBES stock of bottlenose dolphins is unknown. The maximum productivity rate is 0.04, the default value for cetaceans. The recovery factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP), is assumed to be 0.5 because this stock is of unknown status. PBR for this stock of bottlenose dolphins is undetermined.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

The total annual human-caused mortality and serious injury of the BBES bottlenose dolphin stock during 2005-2009 is unknown.

Fishery Information

The commercial fisheries which potentially could interact with this stock are the shrimp trawl, menhaden purse seine and blue crab trap/pot fisheries (Appendix III). During 2005-2009, menhaden, brown shrimp, white shrimp and blue crab fisheries were all important commercial fisheries in Barataria Bay, comprising 4 of the top 5 commercial fisheries each year, both by weight and value of landings (based on data from the Louisiana Department of Wildlife and Fisheries Trip Ticket Program, M. Harden, pers. comm.). There have been no documented interactions between BBES bottlenose dolphins and the shrimp trawl fishery. There have been no documented mortalities of BBES bottlenose dolphins in crab trap/pot fisheries. There is no systematic observer coverage of crab trap/pot fisheries; therefore, it is not possible to quantify total mortality.

Menhaden Purse Seine Fishery

The menhaden purse seine fishery was the top commercial fishery for Barataria Bay in terms of landings by weight for each year from 2005 to 2009 (M. Harden, pers. comm.). There are no recent observer program data for the Gulf of Mexico menhaden purse seine fishery but incidental mortality of bottlenose dolphins has been reported for this fishery (Reynolds 1985). Through the Marine Mammal Authorization Program, there have been 11 self-reported incidental takes (all mortalities) of bottlenose dolphins in northern Gulf of Mexico coastal and estuarine waters by the menhaden purse seine fishery, 1 of which occurred in Barataria Bay during 2002 and was a single “unidentified” dolphin (assumed to be a bottlenose dolphin). Without an observer program it is not possible to obtain statistically reliable information for this fishery on the number of sets annually, the incidental take and mortality rates, and the communities from which bottlenose dolphins are being taken.

Other Mortality

From 2005 to 2009, 5 bottlenose dolphins were reported stranded within the BBES (NOAA National Marine Mammal Health and Stranding Response Database unpublished data, accessed 17 November 2010). One animal stranded during 2006 and the remaining 4 stranded during 2008. It was not possible to make any determination of possible human interaction for 3 of these strandings. For the remaining 2 dolphins, no evidence of human interaction was detected. Stranding data probably underestimate the extent of fishery-related mortality and serious injury because not all of the marine mammals that die or are seriously injured in fishery interactions are discovered, reported or investigated, nor will all of those that are found necessarily show signs of entanglement or other fishery interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interactions.

STATUS OF STOCK

The status of the BBES stock relative to OSP is unknown. The species is not listed as threatened or endangered under the Endangered Species Act. There are insufficient data to determine population trends for this stock. The total human-caused mortality and serious injury for this stock is unknown and there is insufficient information available to determine whether the total fishery-related mortality and serious injury for this stock is insignificant and approaching zero mortality and serious injury rate. Because the stock size is currently unknown but likely small, relatively few mortalities and serious injuries would exceed PBR, NMFS considers this stock to be strategic.

REFERENCES CITED

BOTTLENOSE DOLPHIN (*Tursiops truncatus truncatus*)
St. Joseph Bay Stock

NOTE – NMFS is in the process of writing individual stock assessment reports for each of the 32 bay, sound and estuary stocks of bottlenose dolphins in the Gulf of Mexico. Until this effort is completed and 32 individual reports are available, some of the basic information presented in this report will also be included in the report: “Northern Gulf of Mexico Bay, Sound and Estuary Stocks”.

STOCK DEFINITION AND GEOGRAPHIC RANGE
Bottlenose dolphins are distributed throughout the bays, sounds and estuaries of the Gulf of Mexico (Mullin 1988). Long-term (year-round, multi-year) residency by at least some individuals has been reported from nearly every site where photographic identification (photo-ID) or tagging studies have been conducted in the Gulf of Mexico (e.g., Irvine and Wells 1972; Shane 1977; Gruber 1981; Irvine *et al.* 1981; Wells 1986a; Wells *et al.* 1987; Scott *et al.* 1990; Shane 1990; Wells 1991; Bräger 1993; Bräger *et al.* 1994; Fertl 1994; Wells *et al.* 1996a,b; Wells *et al.* 1997; Weller 1998; Maze and Würsig 1999; Lynn and Würsig 2002; Wells 2003; Hubard *et al.* 2004; Irwin and Würsig 2004; Shane 2004; Balmer *et al.* 2008; Urian *et al.* 2009). In many cases, residents predominantly use the bay, sound or estuary waters, with limited movements through passes to the Gulf of Mexico (Shane 1977; Shane 1990; Gruber 1981; Irvine *et al.* 1981; Shane 1990; Maze and Würsig 1999; Lynn and Würsig 2002; Fazioli *et al.* 2006). These early studies indicating year-round residency to bays in both the eastern and western Gulf of Mexico led to the delineation of 33 bay, sound and estuary stocks, including St. Joseph Bay, with the first stock assessment reports in 1995.

More recently, genetic data also support the concept of relatively discrete bay, sound and estuary stocks (Duffield and Wells 2002; Sellas *et al.* 2005). Sellas *et al.* (2005) examined population subdivision among Sarasota Bay, Tampa Bay, Charlotte Harbor, Matagorda Bay, Texas, and the coastal Gulf of Mexico (1-12 km offshore) from just outside Tampa Bay to the south end of Lemon Bay, and found evidence of significant population differentiation among all areas on the basis of both mitochondrial DNA control region sequence data and 9 nuclear microsatellite loci. The Sellas *et al.* (2005) findings support the identification of bay, sound and estuary communities distinct from those occurring in adjacent Gulf coastal waters. Differences in reproductive seasonality from site to site also suggest genetic-based distinctions among communities (Urian *et al.* 1996). Photo-ID and genetic data from several inshore areas of the southeastern United States also support the existence of resident estuarine animals and a differentiation between animals biopsied along the Atlantic coast and those biopsied within estuarine systems at the same latitude (Caldwell 2001; Gubbins 2002; Zolman 2002; Mazzoil *et al.* 2005; Litz 2007;

Figure 1. Geographic extent of the St. Joseph Bay Stock, located in the Florida panhandle. The stock boundaries are denoted by dashed lines.

St. Joseph Bay is a relatively small embayment of 170 km² in area, located just west of Apalachicola in the central panhandle of Florida (Figure 1). The bay is bounded in the south by Cape San Blas, in the west by the St. Joseph Peninsula and opens in the north to the Gulf of Mexico. St. Joseph Bay extends 21 km in length and 10 km in width at its widest point, and is characterized by extensive seagrass beds and salt marshes. The southern quarter of the bay is 1 m or less deep whereas the deepest portions are in the northwest region at ~10 m deep. Most of St. Joseph Bay has been designated as an aquatic preserve by the state of Florida. There is minimal freshwater inflow into the bay (U.S. EPA 1999; Balmer 2007; Moretzsohn et al. 2010). To the northwest of St. Joseph Bay, Crooked Island Sound (also known as St. Andrew Sound) extends 12 km in length and 2 km in width at its widest point. It varies in depth from 1 m around the margins of the sound to 6-7 m at the sound’s entrance (Balmer 2007). The greatest environmental concerns for this area are declining water quality (mainly due to eutrophication), coastal development, loss of seagrass and saltmarsh habitats and beach erosion (Florida Department of Environmental Protection 2008).

In response to 3 unusual mortality events along the Florida panhandle which all impacted the St. Joseph Bay area, Balmer et al. (2008) conducted photo-ID surveys from April 2004 to July 2007 to examine seasonal abundance, distribution patterns and site fidelity of bottlenose dolphins in St. Joseph Bay and along the coast northwest to and inside Crooked Island Sound. In addition, during April 2005 and July 2006, NOAA and the Sarasota Dolphin Research Program along with other partners, conducted health assessments of bottlenose dolphins in the St. Joseph Bay area. Photo-ID data strongly suggested a movement of dolphins into the St. Joseph Bay region during spring and fall with lower abundance during winter and summer. Dolphins sighted in winter and summer displayed higher site fidelity, whereas the majority of dolphins sighted during spring and fall displayed the lowest site fidelity (Balmer et al. 2008). Radio-tracking results supported these findings, with animals tagged in spring 2005 (April) ranging the farthest of all dolphins tagged, extending outside the St. Joseph Bay Stock region. Overall, Balmer et al. (2008) found abundance to vary seasonally in the St. Joseph Bay area, and suggested the St. Joseph Bay area supports a resident community of bottlenose dolphins as well as seasonal visitors during spring and fall seasons.

The St. Joseph Bay Stock area includes St. Joseph Bay, Crooked Island Sound and coastal waters out to 2 km from shore in between St. Joseph Bay and Crooked Island Sound, and coastal waters out to 2 km from shore from Cape San Blas along St. Joseph Peninsula and along Crooked Island (Figure 1). The boundaries of this stock are based on photo-ID and radio-tracking studies conducted during 2004-2007 (Balmer 2007; Balmer et al. 2008), which support the inclusion of nearshore coastal waters within the boundaries for this particular stock. The boundaries are subject to change as additional research is conducted. There is strong support from the findings of Balmer et al. (2008) to include Crooked Island Sound in the St. Joseph Bay Stock. However, animals from nearby St. Andrew Bay have also been sighted in Crooked Island Sound, suggesting Crooked Island Sound is an area of overlap for dolphins inhabiting both St. Joseph Bay and St. Andrew Bay. An example of overlap with St. Andrew Bay is given by Balmer et al. (2010), who show the sightings for a particular animal, tracked simultaneously via satellite-linked transmitter and VHF radio transmitter, sighted in both Crooked Island Sound and St. Andrew Bay as well as adjacent coastal waters.

Population Size

In order to estimate seasonal abundance, Balmer et al. (2008) conducted photo-ID mark-recapture surveys across multiple seasons from February 2005 through July 2007 in St. Joseph Bay and along the coast to the northwest including Crooked Island Sound (St. Andrew Sound). Line and contour transects were used to cover the study area, and each survey was only conducted if Beaufort Sea State was 3 or less. Balmer et al. (2008) also calculated a distinctiveness rate, which was the proportion of distinctive (marked) dolphins to non-distinctive (unmarked) dolphins, for each survey season. Mark-recapture estimates factored in the distinctiveness rate and included animals with distinctive and non-distinctive fins. Seasonal abundance estimates using the robust ‘Markovian Emigration’ model ranged from 122 dolphins (CV=0.09) for summer 2007 to 340 dolphins (CV=0.09) for fall 2006. Summer and winter estimates provide the best estimate of the resident population as spring and fall estimates also include transient animals. Therefore, the best available abundance estimate for the St. Joseph Bay Stock is the average of estimates for winter 2005, summer 2005, winter 2006 and summer 2007, which is 146 dolphins (CV=0.18).

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normal distributed abundance estimate. This is equivalent to the 20th percentile of the log-normal distributed abundance
estimate as specified by Wade and Angliss (1997). The best estimate for the St. Joseph Bay Stock is 146 (CV=0.18). The resulting minimum population estimate is 126.

Current Population Trend

There are insufficient data to determine the population trends for this stock.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. The maximum net productivity rate was assumed to be 0.04. This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of the minimum population size, one-half the maximum productivity rate, and a “recovery” factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size of the St. Joseph Bay Stock of bottlenose dolphins is 126. The maximum productivity rate is 0.04, the default value for cetaceans. The recovery factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP), is assumed to be 0.5 because this stock is of unknown status. PBR for this stock of bottlenose dolphins is 1.3.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

The total annual human-caused mortality and serious injury to the St. Joseph Bay Stock of bottlenose dolphins during 2005-2009 is unknown.

Fishery Information

The commercial fisheries which potentially could interact with this stock are the shrimp trawl, blue crab trap/pot, stone crab trap/pot and menhaden purse seine fisheries (Appendix III). There have been no documented interactions between St. Joseph Bay bottlenose dolphins and the shrimp trawl fishery. There have been no documented mortalities of St. Joseph Bay bottlenose dolphins in crab trap/pot fisheries. There is no systematic observer coverage of crab trap/pot fisheries; therefore, it is not possible to quantify total mortality. There are no recent observer program data for the Gulf of Mexico menhaden purse seine fishery. The menhaden fishery in this area is very limited, with only 3 fishing trips for Gulf County, Florida, during 2009 (Florida Fish and Wildlife Conservation Commission 2010).

Other Mortality

From 2005 to 2009, 16 bottlenose dolphins were reported stranded within the St. Joseph Bay Stock area (Table 1; NOAA National Marine Mammal Health and Stranding Response Database unpublished data, accessed 17 November 2010). This particular bay, sound and estuary stock includes nearshore coastal waters within its boundaries, and hence strandings that occurred along the coast within the bounds of this stock are also included in the total (Table 1). It was not possible to make any determination of possible human interaction for 15 of these strandings. For the 1 remaining stranding, no evidence of human interactions was detected. Stranding data probably underestimate the extent of fishery-related mortality and serious injury because not all of the marine mammals that die or are seriously injured in fishery interactions are discovered, reported or investigated, nor will all of those that are found necessarily show signs of entanglement or other fishery interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interactions.

St. Joseph Bay has been affected by 3 recent unusual mortality events (UMEs) and was the geographic focus of an UME in 2004. First, between August 1999 and May 2000, 152 bottlenose dolphins died coincident with *K. brevis* blooms and fish kills in the Florida Panhandle. This UME started in St. Joseph Bay and was concurrent spatially and temporally with a *K. brevis* bloom that spread east to west. There were 43 bottlenose dolphin strandings within the St. Joseph Bay Stock area during this event, which accounted for about 28% of the total bottlenose dolphin strandings for the 1999-2000 UME. Second, in March and April 2004, in another Florida Panhandle UME possibly related to *K. brevis* blooms, 105 bottlenose dolphins and 2 unidentified dolphins stranded dead (NOAA 2004). This event also started in St. Joseph Bay, and 81 (76%) bottlenose dolphins stranded in the St. Joseph Bay Stock area. Although there was no indication of a *K. brevis* bloom at the time, high levels of brevetoxin were found in the stomach contents of the stranded dolphins (Flewelling et al. 2005). Third, a separate UME was declared in the Florida Panhandle after elevated numbers of dolphin strandings occurred in association with a *K. brevis* bloom in
September 2005. Dolphin strandings remained elevated through the spring of 2006 and brevetoxin was again detected in the tissues of some of the stranded dolphins. Between September 2005 and April 2006 when the event was officially declared over, a total of 90 bottlenose dolphin strandings occurred (plus strandings of 3 unidentified dolphins), with 12 (13%) occurring within the St. Joseph Bay Stock area. Health assessments of dolphins in the stock area found an eosinophilia syndrome, which could over the long-term produce organ damage and alter immunological status and thereby increase vulnerability to other challenges (Schwacke et al. 2010). However, the significance of the high prevalence of the syndrome to the observed mortality events in the St. Joseph Bay area is unclear.

One research-related mortality occurred during July 2006 in St. Joseph Bay during a NMFS health assessment research project to investigate the above-mentioned UMEs in the region. The animal became entangled deep in the capture net and was found dead during extrication of other animals from the net. The cause of death was determined to be asphyxiation.

Dolphins within the boundaries of this stock, primarily within Crooked Island Sound, have been observed to approach vessels in the area and beg for food (Balmer 2007; Balmer, pers. commun.). Begging behaviors are a result of being illegally fed. It is believed that the animals observed begging within Crooked Island Sound are members of the St. Andrew Bay Stock (the St. Andrew Bay Stock encompasses Panama City, an area where illegal feeding has been documented [Samuels and Bejder 2004]). Three dolphins, which were captured in Crooked Island Sound during the April 2005 health assessment, were observed begging during the 3 months of subsequent radio tracking (Balmer 2007; Balmer, pers. commun.). Two of these individuals, a mom/calf pair, were sighted exclusively within the boundaries of the St. Andrew Bay Stock during all radio tracking surveys. Both of these individuals were found stranded within 2 days of each other on 1 November and 3 November 2005 near Panama City and Panama City Beach. The other individual, an adult male, which was documented in Balmer et al. (2010), was sighted frequently in the waters from St. Andrew Bay to Crooked Island Sound and in association with individuals from both the St. Andrew Bay and St. Joseph Bay Stocks. Thus, the begging behaviors and overlap by individuals of the St. Andrew Bay Stock are likely affecting the behavior of individuals in the St. Joseph Bay Stock.

Table 1. Bottlenose dolphin strandings occurring in the St. Joseph Bay Stock area from 2005 to 2009, as well as number of strandings for which evidence of human interaction was detected and number of strandings for which it could not be determined (CBD) if there was evidence of human interaction. Data are from the NOAA National Marine Mammal Health and Stranding Response Database (unpublished data, accessed 17 November 2010). Please note human interaction does not necessarily mean the interaction caused the animal’s death. Please also note that some animals included in this table may belong to the Gulf of Mexico Northern Coastal Stock since the boundaries for this stock include coastal waters.

<table>
<thead>
<tr>
<th>Stock</th>
<th>Category</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>St. Joseph Bay Stock</td>
<td>Total Stranded</td>
<td>7a</td>
<td>7b</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Human Interaction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>---Yes</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>---No</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>---CBD</td>
<td>6</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>15</td>
</tr>
</tbody>
</table>

a This total includes 7 animals that were part of the 2005-2006 UME event.

b This total includes 5 animals that were part of the 2005-2006 UME event.

STATUS OF STOCK

The status of the St. Joseph Bay Stock relative to OSP is unknown. The species is not listed as threatened or endangered under the Endangered Species Act. The high number of bottlenose dolphin deaths which occurred during the mortality events in the Florida panhandle since 1999 suggests that this stock may be stressed. There are insufficient data to determine population trends for this stock. The total human-caused mortality and serious injury for this stock is unknown and there is insufficient information available to determine whether the total fishery-related mortality and serious injury for this stock is insignificant and approaching zero mortality and serious injury rate. Because the stock size and PBR are small, and 2 mortalities or serious injuries would exceed PBR, the NMFS considers this stock to be strategic.
REFERENCES CITED

Contract report to National Marine Fisheries Service, Southeast Fisheries Center Contribution No. 40-WCNF601958. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.

BOTTLENOSE DOLPHIN (Tursiops truncatus truncatus)
Choctawhatchee Bay Stock

NOTE – NMFS is in the process of writing individual stock assessment reports for each of the 32 bay, sound and estuary stocks of bottlenose dolphins in the Gulf of Mexico. Until this effort is completed and 32 individual reports are available, some of the basic information presented in this report will also be included in the report: “Northern Gulf of Mexico Bay, Sound and Estuary Stocks”.

STOCK DEFINITION AND GEOGRAPHIC RANGE
Bottlenose dolphins are distributed throughout the bays, sounds and estuaries of the Gulf of Mexico (Mullin 1988). Long-term (year-round, multi-year) residency by at least some individuals has been reported from nearly every site where photographic identification (photo-ID) or tagging studies have been conducted in the Gulf of Mexico (e.g., Irvine and Wells 1972; Shane 1977; Gruber 1981; Irvine et al. 1981; Wells 1986a; Wells et al. 1987; Scott et al. 1990; Shane 1990; Wells 1991; Bräger 1993; Bräger et al. 1994; Fertl 1994; Wells et al. 1996a,b; Wells et al. 1997; Weller 1998; Maze and Würsig 1999; Lynn and Würsig 2002; Wells 2003; Hubard et al. 2004; Irwin and Würsig 2004; Shane 2004; Balmer et al. 2008; Urian et al. 2009). In many cases, residents predominantly use the bay, sound or estuary waters, with limited movements through passes to the Gulf of Mexico (Shane 1977; Shane 1990; Gruber 1981; Irvine et al. 1981; Shane 1990; Maze and Würsig 1999; Lynn and Würsig 2002; Fazioli et al. 2006). These early studies indicating year-round residency to bays in both the eastern and western Gulf of Mexico led to the delineation of 33 bay, sound and estuary stocks, including Choctawhatchee Bay, with the first stock assessment reports in 1995.

More recently, genetic data also support the concept of relatively discrete bay, sound and estuary stocks (Duffield and Wells 2002; Sellas et al. 2005). Sellas et al. (2005) examined population subdivision among Sarasota Bay, Tampa Bay, Charlotte Harbor, Matagorda Bay, Texas, and the coastal Gulf of Mexico (1-12 km offshore) from just outside Tampa Bay to the south end of Lemon Bay, and found evidence of significant population differentiation among all areas on the basis of both mitochondrial DNA control region sequence data and 9 nuclear microsatellite loci. The Sellas et al. (2005) findings support the identification of bay, sound and estuary communities distinct from those occurring in adjacent Gulf coastal waters. Differences in reproductive seasonality from site to site also suggest genetic-based distinctions among communities (Urian et al. 1996). Additionally, photo-ID and genetic data from several inshore areas of the southeastern United States also support the existence of resident estuarine animals and a differentiation between animals biopsied along the Atlantic

![Figure 1. Geographic extent of the Choctawhatchee Bay Stock, located in the Florida panhandle. The western border (with Santa Rosa Sound) is denoted by a dashed line.](image)
coast and those biopsied within estuarine systems at the same latitude (Caldwell 2001; Gubbins 2002; Zolman 2002; Mazzoil et al. 2005; Litz 2007; Rosel et al. 2009; NMFS unpublished).

Choctawhatchee Bay is located in the Florida panhandle and connected to the Gulf of Mexico by a single pass, East Pass (Figure 1). The bay is approximately 348 km² in surface area, 43 km in length and 2-10 km in width (Florida Department of Environmental Protection 2010; Conn et al., in press). The bay is relatively shallow with steep slopes. Water depth averages 8 m in western portions and 3 m in eastern portions, with an overall mean depth of 3.8 m. Fresh water flows into Choctawhatchee Bay from the Choctawhatchee River primarily (90% of freshwater input), and from numerous small creeks and bayous as well. Salinity varies from 0 to 34 ppt on an east to west basis from the river delta in the east to East Pass in the west. Choctawhatchee Bay is bordered by forested wetlands and marshes (FL Department of Environmental Protection 2010). To the north and east, development is limited, partly due to the presence of Eglin Air Force Base. To the south and west are well-developed tourist areas (Conn et al., in press). Both commercial and recreational fishing, as well as oyster harvesting, occur in Choctawhatchee Bay. Environmental concerns for this area include eutrophication and its associated problems (e.g., harmful algal blooms, hypoxia) and loss of seagrass beds and tidal marshes (FL Department of Environmental Protection 2010).

Bottlenose dolphins utilizing Choctawhatchee Bay are of particular concern to the NMFS due to the potential impacts of recent Unusual Mortality Events (UMEs) on the population (Conn et al., in press; see ‘Other Mortality’ section). Partly as a result of elevated stranding levels in recent years, Choctawhatchee Bay was chosen by the NMFS as the first in a series of north-central Gulf of Mexico bay, sound and estuary stocks to produce abundance estimates for bottlenose dolphins. Photo-ID surveys were conducted during July-August 2007 and mark-recapture models were used to generate abundance estimates for residents and for residents plus transients (Conn et al., in press).

The boundaries of this stock include waters of Choctawhatchee Bay from Point Washington and Jolly Bay in the east to Fort Walton Beach in the west as this is the area surveyed during the most recent mark-recapture photo-ID abundance surveys. The boundaries are likely to change as additional research is conducted. Some animals sighted multiple times in Choctawhatchee Bay have also been sighted in Santa Rosa Sound and/or Pensacola Bay to the west (Shippee 2010), suggesting the geographic area encompassing this stock may have to be expanded westward to include some or all of these areas as well. Further research is needed to fully determine the degree of overlap between dolphins inhabiting primarily Choctawhatchee Bay and those inhabiting primarily Pensacola Bay and waters in between, and the degree of genetic exchange between dolphins in these areas. Dolphins have been observed leaving Choctawhatchee Bay through the pass and entering nearshore coastal waters (Shippee 2010). Further information is needed to determine how often this stock utilizes these waters. Information on the use of nearshore waters will be important when considering exposure to coastal fisheries as estuarine animals that make use of nearshore coastal waters would be at risk of entanglement in fishing gear while moving along the coast.

POPULATION SIZE
In order to estimate abundance of residents and of residents plus transients, photo-ID mark-recapture surveys were conducted during July-August 2007 in Choctawhatchee Bay using “racetrack” (sampling the perimeter of the bay, taking about 3 days to complete) and “zigzag” (sampling open waters and sections of the racetrack, taking about 4 days to complete) tracklines (Conn et al., in press). Each survey was conducted in Beaufort Sea State 3 or less, in good weather, at a survey speed of 12-14kts. Twenty-one percent of dolphins photographed had non-distinctive dorsal fins, and 188 individuals were identified overall. Conn et al. (in press), averaging over all fitted models, estimated resident abundance as 179 (CV=0.04) and resident plus transient abundance as 232 (CV=0.06). Therefore, the best available abundance estimate of the resident Choctawhatchee Bay Stock is 179 (CV=0.04). This estimate does not account for the proportion of the population with unmarked fins.

Minimum Population Estimate
The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normal distributed abundance estimate. This is equivalent to the 20th percentile of the log-normal distributed abundance estimate as specified by Wade and Angliss (1997). The best estimate for the Choctawhatchee Bay Stock is 179 (CV=0.04). The resulting minimum population estimate is 173.

Current Population Trend
There are insufficient data to determine the population trends for this stock.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES
Current and maximum net productivity rates are unknown for this stock. The maximum net productivity rate
was assumed to be 0.04. This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of the minimum population size, one-half the maximum productivity rate, and a “recovery” factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size of the Choctawhatchee Bay Stock of bottlenose dolphins is 173. The maximum productivity rate is 0.04, the default value for cetaceans. The recovery factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP), is assumed to be 0.5 because this stock is of unknown status. PBR for this stock of bottlenose dolphins is 1.7.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

The total annual human-caused mortality and serious injury of the Choctawhatchee Bay Stock of bottlenose dolphin during 2005-2009 is unknown.

Fishery Information

The commercial fisheries which potentially could interact with this stock are the shrimp trawl, blue crab trap/pot and stone crab trap/pot fisheries (Appendix III). There have been no documented interactions between Choctawhatchee Bay bottlenose dolphins and the shrimp trawl fishery. There have been no documented mortalities of Choctawhatchee Bay bottlenose dolphins in crab trap/pot fisheries. There is no systematic observer coverage of crab trap/pot fisheries; therefore, it is not possible to quantify total mortality.

Other Mortality

From 2005 to 2009, 63 bottlenose dolphins were reported stranded within the Choctawhatchee Bay Stock area (Table 1; NOAA National Marine Mammal Health and Stranding Response Database unpublished data, accessed 17 November 2010). It was not possible to make any determination of possible human interaction for 46 of these strandings. For 13 dolphins, no evidence of human interactions was detected. For the remaining 4 dolphins, evidence of human interactions was found, 3 of which were fishery interactions. Stranding data probably underestimate the extent of fishery-related mortality and serious injury because not all of the marine mammals that die or are seriously injured in fishery interactions are discovered, reported or investigated, nor will all of those that are found necessarily show signs of entanglement or other fishery interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interactions.

Choctawhatchee Bay has been affected by 3 recent unusual mortality events (UME). First, between August 1999 and May 2000, 152 bottlenose dolphins died coincident with *K. brevis* blooms and fish kills in the Florida Panhandle. This UME started in St. Joseph Bay, Florida, and was concurrent spatially and temporally with a *K. brevis* bloom that spread east to west. There were 62 bottlenose dolphin strandings within Choctawhatchee Bay during this event, which accounted for about 41% of the total bottlenose dolphin strandings associated with this UME. Second, in March and April 2004, in another Florida Panhandle UME possibly related to *K. brevis* blooms, 105 bottlenose dolphins and 2 unidentified dolphins stranded dead (NOAA 2004). This event also started in St. Joseph Bay, and the majority (76%) of animals stranded in the St. Joseph Bay Stock area with only 2 strandings within Choctawhatchee Bay. Although there was no indication of a *K. brevis* bloom at the time, high levels of brevotoxin were found in the stomach contents of the stranded dolphins (Flewelling et al. 2005). Third, a separate UME was declared in the Florida Panhandle after elevated numbers of dolphin strandings occurred in association with a *K. brevis* bloom in September 2005. Dolphin strandings remained elevated through the spring of 2006 and brevotoxin was again detected in the tissues of some of the stranded dolphins. Between September 2005 and April 2006 when the event was officially declared over, a total of 90 bottlenose dolphin strandings occurred (plus strandings of 3 unidentified dolphins), with 44 (49%) occurring within Choctawhatchee Bay.
Table 1. Bottlenose dolphin strandings occurring in the Choctawhatchee Bay Stock area from 2005 to 2009, as well as number of strandings for which evidence of human interaction was detected and number of strandings for which it could not be determined (CBD) if there was evidence of human interaction. Data are from the NOAA National Marine Mammal Health and Stranding Response Database (unpublished data, accessed 17 November 2010). Please note human interaction does not necessarily mean the interaction caused the animal’s death.

<table>
<thead>
<tr>
<th>Stock</th>
<th>Category</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choctawhatchee Bay Stock</td>
<td>Total Stranded</td>
<td>18a</td>
<td>32b</td>
<td>8</td>
<td>4</td>
<td>1</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Human Interaction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>---Yes</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>---No</td>
<td>2</td>
<td>7</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>---CBD</td>
<td>16</td>
<td>24</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>46</td>
</tr>
</tbody>
</table>

a This total includes 13 animals that were part of the 2005-2006 UME event.

b This total includes 31 animals that were part of the 2005-2006 UME event.

STATUS OF STOCK

The status of the Choctawhatchee Bay Stock relative to OSP is unknown. The species is not listed as threatened or endangered under the Endangered Species Act. The high number of bottlenose dolphin deaths associated with mortality events in the Florida panhandle since 1999 suggests that this stock may be stressed. There are insufficient data to determine population trends for this stock. The total human-caused mortality and serious injury for this stock is unknown and there is insufficient information available to determine whether the total fishery-related mortality and serious injury for this stock is insignificant and approaching zero mortality and serious injury rate. Because the stock size and PBR are small, and 2 mortalities or serious injuries would exceed PBR, the NMFS considers this stock to be strategic.

REFERENCES CITED

PANTROPICAL SPOTTED DOLPHIN (*Stenella attenuata attenuata*):
Northern Gulf of Mexico Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

There are two species of spotted dolphin in the Atlantic Ocean, the Atlantic spotted dolphin (*Stenella frontalis*) and the pantropical spotted dolphin (*S. attenuata*) (Perrin *et al.* 1987). The Atlantic spotted dolphin occurs in two forms which may be distinct sub-species (Perrin *et al.* 1987, 1994; Rice 1998): the large, heavily spotted form which inhabits the continental shelf and is usually found inside or near the 200m isobath; and the smaller, less spotted island and offshore form which occurs in the Atlantic Ocean but is not known to occur in the Gulf of Mexico (Fulling *et al.* 2003; Mullin and Fulling 2003; Mullin and Fulling 2004). Where they co-occur, the offshore form of the Atlantic spotted dolphin and the pantropical spotted dolphin can be difficult to differentiate at sea.

The pantropical spotted dolphin is distributed worldwide in tropical and some sub-tropical oceans (Perrin *et al.* 1987; Perrin and Hohn 1994). Sightings of this species occur in oceanic waters of the northern Gulf of Mexico (i.e., U.S. Gulf of Mexico) (Figure 1; Mullin and Fulling 2004; Maze-Foley and Mullin 2006). Pantropical spotted dolphins were seen in all seasons during GulfCet aerial surveys of the northern Gulf of Mexico between 1992 and 1998 (Hansen *et al.* 1996; Mullin and Hoggard 2000).

Some of the Pacific Ocean populations have been divided into different geographic stocks based on morphological characteristics (Perrin *et al.* 1987; Perrin and Hohn 1994). The Gulf of Mexico population is provisionally being considered a separate stock for management purposes, although there is currently no information to differentiate this stock from the Atlantic Ocean stock(s). Additional morphological, genetic and/or behavioral data are needed to provide further information on stock delineation.

POPULATION SIZE

The best abundance estimate available for northern Gulf of Mexico pantropical spotted dolphins is 34,067 (CV=0.18) (Mullin 2007; Table 1). This estimate is pooled from summer 2003 and spring 2004 oceanic surveys covering waters from the 200m isobath to the seaward extent of the U.S. Exclusive Economic Zone (EEZ).

Earlier abundance estimates

Estimates of abundance were derived through the application of distance sampling analysis (Buckland *et al.* 2001) and the computer program DISTANCE (Thomas *et al.* 1998) to sighting data. From 1991 through 1994, line-transect vessel surveys were conducted in conjunction with bluefin tuna ichthyoplankton surveys during spring in the northern Gulf of Mexico from the 200m isobath to the seaward extent of the U.S. EEZ (Hansen *et al.* 1995). Annual cetacean surveys were conducted along a fixed plankton sampling trackline. Survey effort-weighted estimated average abundance of pantropical spotted dolphins for all surveys combined was 31,320 (CV=0.20) (Hansen *et al.* 1995; Table 1).

Similar surveys were conducted during spring from 1996 to 2001 (excluding 1998) in oceanic waters of the northern Gulf of Mexico. Due to limited survey effort in any given year, survey effort was pooled across all years to

Figure 1. Distribution of pantropical spotted dolphin sightings from SEFSC spring vessel surveys during 1996-2001 and from summer 2003 and spring 2004 surveys. All the on-effort sightings are shown, though not all were used to estimate abundance. Solid lines indicate the 100m and 1,000m isobaths and the offshore extent of the U.S. EEZ.
develop an average abundance estimate. The estimate of abundance for pantropical spotted dolphins in oceanic waters, pooled from 1996 to 2001, was 91,321 (CV=0.16) (Mullin and Fulling 2004; Table 1).

Recent surveys and abundance estimates

During summer 2003 and spring 2004, line-transect surveys dedicated to estimating the abundance of oceanic cetaceans were conducted in the northern Gulf of Mexico. During each year, a grid of uniformly-spaced transect lines from a random start were surveyed from the 200m isobath to the seaward extent of the U.S. EEZ using NOAA Ship Gordon Gunter (Mullin 2007).

As recommended in the GAMMS Workshop Report (Wade and Angliss 1997), estimates older than 8 years are deemed unreliable, and therefore should not be used for PBR determinations. Because most of the data for estimates prior to 2003 were older than this 8-year limit and due to the different sampling strategies, estimates from the 2003 and 2004 surveys were considered most reliable. The estimate of abundance for pantropical spotted dolphins in oceanic waters, pooled from 2003 to 2004, was 34,067 (CV=0.18) (Mullin 2007; Table 1), which is the best available abundance estimate for this species in the northern Gulf of Mexico.

<table>
<thead>
<tr>
<th>Month/Year</th>
<th>Area</th>
<th>N_{est}</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apr-Jun 1991-1994</td>
<td>Oceanic waters</td>
<td>31,320</td>
<td>0.20</td>
</tr>
<tr>
<td>Apr-Jun 1996-2001 (excluding 1998)</td>
<td>Oceanic waters</td>
<td>91,321</td>
<td>0.16</td>
</tr>
<tr>
<td>Jun-Aug 2003, Apr-Jun 2004 (pooled)</td>
<td>Oceanic waters</td>
<td>34,067</td>
<td>0.18</td>
</tr>
</tbody>
</table>

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normal distributed abundance estimate. This is equivalent to the 20th percentile of the log-normal distributed abundance estimate as specified by Wade and Angliss (1997). The best estimate of abundance for pantropical spotted dolphins is 34,067 (CV=0.18). The minimum population estimate for the northern Gulf of Mexico is 29,311 pantropical spotted dolphins.

Current Population Trend

There are insufficient data to determine the population trends for this stock. The pooled abundance estimate for 2003-2004 of 34,067 (CV=0.18) and that for 1996-2001 of 91,321 (CV=0.16) are significantly different (P<0.05). However, the 2003-2004 estimate is similar to that for 1991-1994 of 31,320 (CV=0.20). These temporal abundance estimates are difficult to interpret without a Gulf of Mexico-wide understanding of pantropical spotted dolphin abundance. The Gulf of Mexico is composed of waters belonging to the U.S., Mexico and Cuba. U.S. waters only comprise about 40% of the entire Gulf of Mexico, and 65% of oceanic waters are south of the U.S. EEZ. The oceanography of the Gulf of Mexico is quite dynamic, and the spatial scale of the Gulf is small relative to the ability of most cetacean species to travel. Studies based on abundance and distribution surveys restricted to U.S. waters are unable to detect temporal shifts in distribution beyond U.S. waters that might account for any changes in abundance.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04. This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential biological removal level (PBR) is the product of the minimum population size, one half the maximum net productivity rate, and a recovery factor (MMPA Sec. 3.16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is 29,311. The maximum productivity rate is 0.04, the default value for cetaceans. The “recovery” factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP), is assumed to be 0.5 because the stock is of unknown status. PBR for the northern Gulf of Mexico pantropical spotted dolphin stock is 293.
ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

The estimated annual average fishery-related mortality or serious injury for this stock during 2005-2009 is 3.2 pantropical spotted dolphins (CV=0.69; Table 2).

Fisheries Information

The level of past or current, direct, human-caused mortality of pantropical spotted dolphins in the northern Gulf of Mexico is unknown; however, interactions between pantropical spotted dolphins and the pelagic longline fishery have been observed in the Gulf of Mexico. Pelagic swordfish, tuna and billfish are the targets of the longline fishery operating in the northern Gulf of Mexico. There were no reports of mortality or serious injury to pantropical spotted dolphins by this fishery during 1998-2008 (Yeung 1999; Yeung 2001; Garrison 2003; Garrison and Richards 2004; Garrison 2005; Fairfield Walsh and Garrison 2006; Fairfield-Walsh and Garrison 2007; Fairfield and Garrison 2008; Garrison et al. 2009). However, during 2009, 4 pantropical spotted dolphins were observed to be seriously injured (3 during quarter 2 and 1 during quarter 4) and 1 pantropical spotted dolphin was released alive with no presumed serious injury after entanglement interactions with the pelagic longline fishery (Garrison and Stokes 2010). Estimated serious injuries of pantropical spotted dolphins attributable to the pelagic longline fishery in the Gulf of Mexico region totaled 15.9 (CV=0.69) in 2009. The average annual serious injury and mortality in the Gulf of Mexico pelagic longline fishery for the 5-year period from 2005 to 2009 is 3.2 (CV=0.69; Table 2).

<table>
<thead>
<tr>
<th>Fishery</th>
<th>Year(s)</th>
<th>Data Type</th>
<th>Observer Coverage</th>
<th>Observed Serious Injury</th>
<th>Observed Mortality</th>
<th>Estimated Serious Injury</th>
<th>Estimated Mortality</th>
<th>Estimated Combined Mortality</th>
<th>Estimated CVs</th>
<th>Mean Annual Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pelagic Longline</td>
<td>05-09</td>
<td>Obs. Data Logbook</td>
<td>.07, .08, .15, .25, .21</td>
<td>0, 0, 0, 0, 0, 4</td>
<td>0, 0, 0, 0, 0, 16</td>
<td>0, 0, 0, 0, 0, 16</td>
<td>NA, NA, NA, .69</td>
<td>3.2 (.69)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Mandatory logbook data were used to measure total effort for the longline fishery. These data are collected at the Southeast Fisheries Science Center (SEFSC).

Other Mortality

Five pantropical spotted dolphins stranded in the Gulf of Mexico during 2005-2009 (2 in Florida in 2008 and 2009, 2 in Alabama in 2005 and 2009, and 1 in Texas in 2009; NOAA National Marine Mammal Health and Stranding Response Database unpublished data, accessed 17 November 2010). No evidence of human interactions was detected for 2 of these stranded animals, and for the remaining 3 animals, it could not be determined if there was evidence of human interactions. Stranding data probably underestimate the extent of fishery-related mortality and serious injury because not all of the marine mammals which die or are seriously injured in fishery interactions wash ashore, not all that wash ashore are discovered, reported or investigated, nor will all of those that do wash ashore necessarily show signs of entanglement or other fishery interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interactions.

STATUS OF STOCK

The status of pantropical spotted dolphins in the northern Gulf of Mexico, relative to OSP, is unknown. The species is not listed as threatened or endangered under the Endangered Species Act. There are insufficient data to determine the population trends for this stock. Total human-caused mortality and serious injury for this stock is not known. There is insufficient information available to determine whether the total fishery-related mortality and serious injury for this stock is insignificant and approaching zero mortality and serious injury rate. This is not a strategic stock because it is assumed that the average annual human-related mortality and serious injury does not exceed PBR.
REFERENCES CITED

Marine Mammalogy, Lawrence, KS. 231 pp.

BOTTLENOSE DOLPHIN (*Tursiops truncatus truncatus*):
Puerto Rico and U.S. Virgin Islands Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

In waters of Puerto Rico and the Virgin Islands in the northeastern Caribbean Sea, the bottlenose dolphin has been described as the most frequently sighted cetacean, especially for inshore waters (Erdman 1970; Erdman *et al.* 1973; Taruski and Winn 1976; Migliucci-Giannini 1998), as well as the second most common species found stranded (Migliucci-Giannini *et al.* 1999; Migliucci-Giannini *et al.* 2009). Sightings have occurred throughout Puerto Rico and the Virgin Islands, primarily over the shelf or near shelf-edge habitats (Erdman 1970; Erdman *et al.* 1973; Taruski and Winn 1976; Mattila and Clapham 1989; Migliucci-Giannini 1998). The bottlenose dolphin is widely distributed throughout other areas of the Caribbean as well. For example, it has been reported from Cuba (van Waerebeek *et al.* 2006), Dominican Republic (Mattila *et al.* 1994; Whaley *et al.* 2006; Parsons *et al.* 2010), St. Vincent and the Grenadines (Caldwell *et al.* 1971; Caldwell and Caldwell 1975; Yoshida *et al.* 2010), Martinique (Jérémie *et al.* 2006), Guadeloupe, St. Lucia and Barbados (Yoshida *et al.* 2010), Trinidad (van Bree 1975), throughout Venezuela, particularly in the east (Romero *et al.* 2001; Romero *et al.* 2002; Oviedo *et al.* 2005), Leeward Netherlands Antilles (Debrot *et al.* 1998), Colombia (Romero *et al.* 2001; Pardo and Palacios 2006; Fraija *et al.* 2009; Pardo *et al.* 2009), Panama (Pardo *et al.* 2009), Belize (Jefferson and Lynn 1994; Grigg and Markowitz 1997; Campbell *et al.* 2002; Kerr *et al.* 2005) and the eastern Caribbean area generally (Guadeloupe to St. Vincent and the Grenadines; Watkins *et al.* 1985).

The Puerto Rico and U.S. Virgin Islands bottlenose dolphin population is provisionally being considered a separate stock for management purposes, although there is currently no information to differentiate this stock from the Atlantic Ocean and Gulf of Mexico stocks. This population potentially consists of multiple stocks. The “coastal/nearshore” and “offshore” ecotypes of bottlenose dolphins are genetically distinct, and both occur in the western North Atlantic Ocean including the Gulf of Mexico (Hersh and Duffield 1990; Hoezel *et al.* 1998; LeDuc and Curry 1998; Rosel *et al.* 2009). In the northwestern Atlantic Ocean, Torres *et al.* (2003) reported that the offshore ecotype was found exclusively seaward of 34 km and in waters deeper than 34 m. Additional morphological, genetic and/or behavioral data are needed to provide further information on stock delineation. Bottlenose dolphins of the Puerto Rico and U.S. Virgin Islands stock are likely trans-boundary with, at a minimum, waters near adjacent Caribbean islands and are not likely to occur exclusively within the bounds of the U.S. EEZ.

Figure 1. Distribution of bottlenose dolphin sightings from SEFSC shipboard surveys during winters of 1995 and 2001. Solid lines indicate the 200m and 2,000m isobaths and the boundary of the U.S. EEZ.
POPPULATION SIZE
The abundance of the Puerto Rico and U.S. Virgin Islands stock of bottlenose dolphins is unknown. A line-transect survey was conducted during January-March 1995 on NOAA Ship Oregon II, and was designed to cover a wide range of water depths surrounding Puerto Rico and the Virgin Islands. However, due to the bottom topography of the region and the size of the vessel, most waters surveyed were >200 m deep, and only 1 sightings of bottlenose dolphins was made in U.S. waters (Rodent and Mullin 2000). Another line-transect survey for humpback whales was conducted during February-March 2000 aboard NOAA Ship Gordon Gunter in the eastern and southern Caribbean Sea. A portion of the survey effort occurred in U.S. waters during transit, but no bottlenose dolphins were sighted (Swartz and Burks 2000). During February-March 2001 a line-transect survey was conducted in waters of the eastern Bahamas, eastern Dominican Republic, Puerto Rico and Virgin Islands. Two sightings of bottlenose dolphins were made, both in U.S. waters (Swartz et al. 2002). It was not possible to estimate abundance from these surveys using line-transect methods due to so few sightings (Figure 1).

Minimum Population Estimate
Present data are insufficient to calculate a minimum population estimate for this stock of bottlenose dolphins.

Current Population Trend
There are insufficient data to determine population trends for this stock.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES
Current and maximum net productivity rates are unknown for this stock. The maximum net productivity rate is assumed to be 0.04. This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL
Potential biological removal level (PBR) is the product of minimum population size, one-half the maximum productivity rate and a recovery factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The maximum productivity rate is 0.04, the default value for cetaceans. The “recovery” factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP), is assumed to be 0.5 because the stock is of unknown status. PBR for this stock of bottlenose dolphins is unknown.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY
The level of past or current, direct, human-caused mortality and serious injury of bottlenose dolphins in U.S. waters of the Caribbean Sea is unknown.

Fisheries Information

Spiny Lobster and Mixed Species Trap/Pot Fisheries
During 2008 one dolphin was reported by a local fisherman from Cabo Rojo, Puerto Rico, as dead and entangled in rope with 2 pots attached (fishery could not be confirmed; NOAA National Marine Mammal Health and Stranding Response Database unpublished data, accessed 17 November 2010). The dolphin was cut loose from the rope by the fisherman, and the carcass was not recovered. This mortality was included in the stranding database and is included in the stranding totals below. Since there is no systematic observer program, it is not possible to estimate the total number of interactions or mortalities associated with spiny lobster and mixed species trap/pot fisheries.

Pelagic Longline Fishery
Pelagic swordfish, tunas and billfish are the targets of the longline fishery operating in the Caribbean Sea. There has been no reported fishing-related mortality of a bottlenose dolphin during recent years (2001-2009) in waters surrounding Puerto Rico or the U.S. Virgin Islands (Garrison 2003; Garrison and Richards 2004; Garrison 2005; Fairfield Walsh and Garrison 2006; Fairfield-Walsh and Garrison 2007; Fairfield and Garrison 2008; Garrison et al. 2009; Garrison and Stokes 2010). However, it is important to note that for some recent years, 2006, 2008 and 2009, there has been no observer coverage of the pelagic longline fishery in the Caribbean region (Fairfield-Walsh and Garrison 2007; Garrison et al. 2009; Garrison and Stokes 2010).
Dolphin Fisheries and Live-Capture Fisheries in the Caribbean

While no whaling or dolphin fishery occurs at present in the waters of Puerto Rico and the U.S. Virgin Islands, small-scale whaling and dolphin fisheries, conducted by local whalers, are still carried out by the eastern Caribbean nations of Dominica, St. Lucia, and St. Vincent and the Grenadines (e.g., Caldwell et al. 1971; Caldwell and Caldwell 1975; Price 1985; Hoyt and Hyenegaard 2002; Romero et al. 2002; Mohammed et al. 2003; World Council of Whalers 2008), and by Venezuela (Romero et al. 1997; Romero et al. 2002). It is difficult to determine the extent that the bottlenose dolphin, or any other particular dolphin species, has been taken in the dolphin fisheries because the smaller cetacean species hunted have generally been lumped by weight under the heading “porpoise” and reported as such (Caldwell and Caldwell 1975; Price 1985). However, bottlenose dolphins have been and are still being taken in dolphin fisheries in the eastern and southern Caribbean Sea (e.g., Caldwell et al. 1971; Caldwell and Caldwell 1975; Romero et al. 1997; Romero et al. 2002; Mohammed et al. 2003; Vail 2005). Bottlenose dolphins have also been the subjects of live-capture fisheries in Cuba, Dominican Republic, Haiti and Honduras for use in dolphinaria locally and around the world (van Waerebeek et al. 2006; Parsons et al. 2010).

Other Mortality

Six bottlenose dolphins were found stranded in U.S. waters of the Caribbean Sea from 2005 through 2009 (NOAA National Marine Mammal Health and Stranding Response Database unpublished data, accessed 17 November 2010). Of these, 2 showed evidence of human interactions. One case of human interaction involved entanglement in pot gear and was mentioned above, and the second case involved healed marks from an interaction with fishing gear. For 3 of the animals, it could not be determined if there was evidence of human interactions, and for the remaining animal, no evidence of human interactions was found. Stranding data probably underestimate the extent of fishery-related mortality and serious injury because not all of the marine mammals which die or are seriously injured in fishery interactions wash ashore, not all that wash ashore are discovered, reported or investigated, nor will all of those that do wash ashore necessarily show signs of entanglement or other fishery-interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interactions.

The potential impact of coastal pollution may be an issue for this species in portions of its habitat. The U.S. Navy and the U.S. Marine Corps used the Atlantic Fleet Weapons Training Facility operated out of Vieques Island, Puerto Rico, from 1948 to 2003, including the training of pilots for live ordnance delivery and amphibious assault landings by the Marine Corps. The U.S. Environmental Protection Agency has designated parts of Vieques Island on the Superfund National Priorities List because various parts of the island and nearby waters have become contaminated by solid and/or hazardous waste resulting from decades of military activity (EPA 2009). Identified areas of concern include ship anchoring areas north of Vieques, waters impacted by target practice on eastern Vieques and waters near western Vieques. Remnants of exploded ordnance and large amounts of unexploded ordnance have been identified in the range areas of Vieques and in the surrounding waters. Hazardous substances associated with ordnance use may include lead, mercury, lithium, magnesium, copper, perchlorate, napalm, TNT, and depleted uranium, among others. At both the eastern and western ends of Vieques, hazardous materials may also include an assortment of chemicals such as pesticides, solvents and PCBs (EPA 2009). The naval station at Roosevelt Roads in Puerto Rico operated from 1943 to 2004 (between 1943 and 1957 it was opened and closed multiple times). It operated as a major training site for fleet exercises; potential impacts, if any, on bottlenose dolphins are unknown.

STATUS OF STOCK

The status of bottlenose dolphins, relative to OSP, in U.S. waters of the Caribbean Sea is unknown. The size of this stock or any population of bottlenose dolphins in the northeast Caribbean has never been assessed. The species is not listed as threatened or endangered under the Endangered Species Act. There are insufficient data to determine population trends for this stock. Total human-caused mortality and serious injury for this stock is not known. There is no systematic monitoring of all fisheries that may take this stock. There is insufficient information available to determine whether the total fishery-related mortality and serious injury for this stock is insignificant and approaching zero mortality and serious injury rate. For these reasons and because the stock size is currently unknown, PBR is undetermined, and there is a recent documented case of human-related mortality, this stock is a strategic stock.
REFERENCES CITED

CUVIER'S BEAKED WHALE (Ziphius cavirostris):
Puerto Rico and U.S. Virgin Islands Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

Cuvier's beaked whales are distributed throughout offshore waters of the world's oceans except for the polar regions (Leatherwood and Reeves 1983; Heyning 1989; Jefferson et al. 2008). Cuvier's beaked whales have been sighted in Puerto Rico and the U.S. Virgin Islands and throughout the Caribbean Sea. For example, strandings or sightings have been reported from Cuba (Erdman 1970), Dominican Republic (Romero et al. 2001), St. Martin (van Bree 1975), Dominica (Gordon et al. 1998), Martinique (Jérémie et al. 2006), St. Vincent (Caldwell et al. 1971a), Barbados (Caldwell et al. 1971b), Venezuela (Romero et al. 2001), Colombia (Romero et al. 2001), and Aruba, Bonaire and Curacao of the Leeward Netherlands Antilles (van Bree 1975; Debrot and Barro 1994; Debrot et al. 1998; Romero et al. 2001). In the northeastern Caribbean including Puerto Rico, strandings were reported by Erdman (1970), and strandings and probable sightings by Erdman et al. (1973). Mignucci-Giannoni (1998) found 8 sighting records of Cuvier's beaked whales from published and unpublished data between 1954 and 1989 for waters of Puerto Rico and the U.S. and British Virgin Islands. Upon examination of stranding records from 1867 through 1995, 30 Cuvier's beaked whales were reported stranded in waters of Puerto Rico and the Virgin Islands, making it the most commonly stranded species by number of individuals (Mignucci-Giannoni et al. 1999). It is referred to as one of the most frequently stranded cetaceans in the northeastern Caribbean by Pérez-Zayas et al. (2002).

The Puerto Rico and U.S. Virgin Islands Cuvier's beaked whale population is provisionally considered a separate stock for management purposes, although there is currently no information to differentiate this stock from the Atlantic Ocean and Gulf of Mexico stocks. Additional morphological, genetic and/or behavioral data are needed to provide further information on stock delineation. Cuvier's beaked whales of this stock are likely trans-boundary with, at a minimum, waters near adjacent Caribbean islands and are not likely to occur exclusively within the bounds of the U.S. EEZ.

POPULATION SIZE

The best abundance estimate available for the Puerto Rico and U.S. Virgin Islands stock of Cuvier's beaked whales is unknown. A line-transect survey was conducted during January-March 1995 on NOAA Ship Oregon II, and was designed to cover a wide range of water depths surrounding Puerto Rico and the Virgin Islands. Due to the bottom topography of the region and the size of the vessel, most waters surveyed were >200 m deep. No Cuvier's
beaked whales were sighted (Roden and Mullin 2000). Another line-transect survey for humpback whales was conducted during February-March 2000 aboard NOAA Ship *Gordon Gunter* in the eastern and southern Caribbean Sea. A portion of the survey effort occurred in U.S. waters during transit, but no Cuvier’s beaked whales were sighted in U.S. waters. However, 1 sighting of 3 Cuvier’s beaked whales was made south of Martinique at about 1500 m depth (Swartz and Burks 2000). During February-March 2001 a line-transect survey was conducted in waters of the eastern Bahamas, eastern Dominican Republic, Puerto Rico and Virgin Islands. One sighting of 3 Cuvier’s beaked whales was made in U.S. waters north of Puerto Rico at a depth of 2872m. Two additional sightings were made in U.S. waters of unidentified beaked whales (Figure 1; Swartz et al. 2002). It was not possible to estimate abundance from these surveys using line-transect methods due to so few sightings.

Minimum Population Estimate

Present data are insufficient to calculate a minimum population estimate for this stock of Cuvier’s beaked whales.

Current Population Trend

There are insufficient data to determine the population trends for this stock.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. The maximum net productivity rate is assumed to be 0.04. This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential biological removal level (PBR) is the product of the minimum population size, one half the maximum net productivity rate and a recovery factor (MMPA Sec. 3.16 U.S.C. 1362; Wade and Anglass 1997). The minimum population size is unknown. The maximum productivity rate is 0.04, the default value for cetaceans. The “recovery” factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP), is assumed to be 0.5 because the stock is of unknown status. PBR for this stock of Cuvier’s beaked whales is unknown.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

Estimates of annual human-caused mortality and serious injury are unknown for this stock.

Fisheries Information

The level of past or current, direct, human-caused mortality of Cuvier’s beaked whales in Puerto Rico and the U.S. Virgin Islands is unknown. Pelagic swordfish, tunas and billfish are the targets of the longline fishery operating in the Caribbean Sea. There has been no reported fishing-related mortality of a Cuvier’s beaked whale during recent years (2001-2009) in waters surrounding Puerto Rico or the U.S. Virgin Islands; however, interactions with unidentified beaked whales and the longline fishery have occurred in the Caribbean region between Cuba and Haiti (Garrison 2003; Garrison and Richards 2004; Garrison 2005; Fairfield Walsh and Garrison 2006; Fairfield-Walsh and Garrison 2007; Fairfield and Garrison 2008; Garrison et al. 2009; Garrison and Stokes 2010). During 2003, 1 unidentified beaked whale was released alive and presumed to not be seriously injured. Estimated number of unidentified beaked whales “released alive” after an entanglement interaction with the pelagic longline fishery in the Caribbean region during quarter 1 of 2003 was 40.5 (CV=1.00; Garrison and Richards 2004). It is also important to note that for some recent years, 2006, 2008 and 2009, there has been no observer coverage of the pelagic longline fishery in the Caribbean region (Fairfield-Walsh and Garrison 2007; Garrison et al. 2009; Garrison and Stokes 2010).

While no whaling occurs at present in the waters of Puerto Rico and the U.S. Virgin Islands, small-scale whaling (artisanal), conducted by local whalers, is still carried out by the eastern Caribbean nations of Dominica, St. Lucia, and St. Vincent and the Grenadines (e.g., Rathjen and Sullivan 1970; Caldwell et al. 1971a; Adams 1975; Caldwell and Caldwell 1975; Price 1985; Reeves 1988; Hoyt and Hvenegaard 2002; Romero et al. 2002; Mohammed et al. 2003; World Council of Whalers 2008). Occasionally artisanal whalers in the Lesser Antillean islands will kill Cuvier’s beaked whales, but they are not the target of a regular hunt (Reeves et al. 2003). Takes in the St. Vincent fishery have included Cuvier’s beaked whales (Caldwell et al. 1971a; Caldwell and Caldwell 1975), but very limited monitoring of catches is carried out for any small whale/dolphin fishery (Price 1985).
Other Mortality

No Cuvier’s beaked whales were found stranded in U.S. waters of the Caribbean Sea from 2005 through 2009 (NOAA National Marine Mammal Health and Stranding Response Database unpublished data, accessed 17 November 2010). Stranding data probably underestimate the extent of fishery-related mortality and serious injury because not all of the marine mammals which die or are seriously injured in fishery interactions wash ashore, not all that wash ashore are discovered, reported or investigated, nor will all of those that do wash ashore necessarily show signs of entanglement or other fishery interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interactions.

The potential impact of coastal pollution may be an issue for this species in portions of its habitat. The U.S. Navy and the U.S. Marine Corps used the Atlantic Fleet Weapons Training Facility operated out of Vieques Island, Puerto Rico, from 1948 to 2003, including the training of pilots for live ordnance delivery and amphibious assault landings by the Marine Corps. The U.S. Environmental Protection Agency has designated parts of Vieques Island on the Superfund National Priorities List because various parts of the island and nearby waters have become contaminated by solid and/or hazardous waste resulting from decades of military activity (EPA 2009). Identified areas of concern include ship anchoring areas north of Vieques, waters impacted by target practice on eastern Vieques and waters near western Vieques. Remnants of exploded ordnance and large amounts of unexploded ordnance have been identified in the range areas of Vieques and in the surrounding waters. Hazardous substances associated with ordnance use may include lead, mercury, lithium, magnesium, copper, perchlorate, napalm, TNT, and depleted uranium, among others. At both the eastern and western ends of Vieques, hazardous materials present may also include an assortment of chemicals such as pesticides, solvents and PCBs (EPA 2009).

The naval station at Roosevelt Roads in Puerto Rico operated from 1943 to 2004 (between 1943 and 1957 it was opened and closed multiple times). It operated as a major training site for fleet exercises, but potential impacts, if any, on Cuvier’s beaked whales are unknown. Several unusual mass strandings of beaked whales in North Atlantic marine environments have been associated with military naval activities. During the mid- to late 1980’s multiple mass strandings of Cuvier’s beaked whales (4 to about 20 per event) and small numbers of Gervais’ beaked whales and Blainville’s beaked whales occurred in the Canary Islands (Simmonds and Lopez-Jurado 1991). Twelve Cuvier’s beaked whales that live stranded and subsequently died in the Mediterranean Sea on 12-13 May 1996 were associated with low frequency acoustic sonar tests conducted by the North Atlantic Treaty Organization (Frantzi 1998). In March 2000, 14 beaked whales live stranded in the Bahamas; 6 beaked whales (5 Cuvier’s and 1 Blainville’s) died (Evans and England 2001; Balcomb and Claridge 2001; Cox et al. 2006). Four Cuvier’s, 2 Blainville’s, and 2 unidentified beaked whales were returned to sea. The fate of the animals returned to sea is unknown. Necropsies were performed on 5 of the dead beaked whales and revealed evidence of tissue trauma associated with an acoustic or impulse injury that caused the animals to strand. Subsequently, the animals died due to extreme physiologic stress associated with the physical stranding (i.e., hyperthermia, high endogenous catecholamine release) (Evans and England 2001; Cox et al. 2006).

STATUS OF STOCK

The status of Cuvier’s beaked whales, relative to OSP, in U.S. waters of the Caribbean Sea is unknown. The size of this stock or any population of Cuvier’s beaked whales in the northeast Caribbean has never been assessed. The species is not listed as threatened or endangered under the Endangered Species Act. There are insufficient data to determine population trends for this stock. Total human-caused mortality and serious injury for this stock is not known. There is no systematic monitoring of all fisheries that may take this stock. There is insufficient information available to determine whether the total fishery-related mortality and serious injury for this stock is insignificant and approaching zero mortality and serious injury rate. For these reasons and because the stock size is currently unknown, PBR is undetermined, and there are documented interactions between unidentified beaked whales and the pelagic longline fishery in waters between Cuba and Haiti, this stock is a strategic stock.

REFERENCES CITED

SHORT-FINNED PILOT WHALE \((\text{Globicephala macrorhynchus}) \)
Puerto Rico and U.S. Virgin Islands Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

The short-finned pilot whale is distributed worldwide in tropical to temperate waters (Leatherwood and Reeves 1983). Short-finned pilot whales were commercially hunted in the Caribbean Sea, including the waters surrounding Puerto Rico and the U.S. Virgin Islands, by New England whaling vessels during the eighteenth and nineteenth centuries (Price 1985; Reeves et al. 2001). Small-scale whaling of short-finned pilot whales, carried out by local fisherman, is still conducted in the eastern Caribbean (see Fisheries Information section; e.g., Rathjen and Sullivan 1970; Caldwell et al. 1971; Adams 1975; Caldwell and Caldwell 1975; Hoyt and Hvenegaard 2002; Mohammed et al. 2003; World Council of Whalers 2008).

In waters of the Caribbean Sea, the short-finned pilot whale is widely distributed. Sightings in Puerto Rico and the Virgin Islands area have been described by Caldwell and Erdman (1963), Erdman (1970), Erdman et al. (1973), Taruski and Winn (1976) and Mattila and Clapham (1989). Caldwell and Erdman (1963) also reported a sighting for Haiti, and Taruski and Winn (1976) reported a sighting for St. Vincent. Sightings have been reported for Dominican Republic (Mattila et al. 1994), Dominica (Gordon et al. 1998), Martinique (Jérémie et al. 2006) and waters near Antigua, Guadeloupe and St. Vincent (Yoshida et al. 2010). Sightings and strandings have been reported for the Leeward Netherlands Antilles (Debrot et al. 1998), Venezuela (Romero et al. 2001) and Colombia (Casinos and Bou 1980; Pardo and Palacios 2006). A mass stranding of 16 short-finned pilot whales was reported on Nevis during 1969 (Caldwell et al. 1970). Catches from pilot whale fisheries have been reported from St. Vincent, St. Lucia, Dominica, Martinique and Cuba (e.g., Caldwell and Erdman 1963; Mitchell 1975; Price 1985; Mohammed et al. 2003).

Mignucci-Giannoni (1998) found 69 sighting records of short-finned pilot whales from published and unpublished data between 1958 and 1989 for waters of Puerto Rico, the U.S. Virgin Islands and the British Virgin Islands, and suggested that pilot whales occur year-round with more sightings during winter and spring. Mignucci-Giannoni (1998) documented sightings in both continental shelf and oceanic waters with about 45% of sightings in waters less than 183m deep. NMFS winter ship surveys indicated that short-finned pilot whales inhabit continental slope and oceanic waters, with sightings made in a wide range of water depths >500 m (Figure 1); however, most waters surveyed by NMFS were >200 m deep due to the bottom topography of the region and the size of the survey vessel (Roden and Mullin 2000; Swartz and Burks 2000; Swartz et al. 2002). Upon examination of stranding records from 1867 through 1995, short-finned pilot whales were reported to be one of the most common species to strand in waters of Puerto Rico and the U.S. and British Virgin Islands (Mignucci-Giannoni et al. 1999). All sources of information to date indicate short-finned pilot whales are common and widely distributed in the

Figure 1. Distribution of short-finned pilot whale sightings from SEFSC vessel surveys during winters of 1995, 2000 and 2001. The solid lines indicate the 20-0m and 2,000-m isobaths and the boundary of the U.S. EEZ.

188
waters of Puerto Rico and the U.S. Virgin Islands.

Short-finned pilot whales have not been studied extensively in the waters around Puerto Rico and the U.S. Virgin Islands. Studies are currently being conducted at the Southeast Fisheries Science Center to evaluate genetic population structure in short-finned pilot whales in the western North Atlantic and Gulf of Mexico. The Puerto Rico and U.S. Virgin Islands short-finned pilot whale population is provisionally being considered a separate stock for management purposes, although there is currently no information to differentiate this stock from the western North Atlantic Ocean stock found off the U.S. East Coast or the northern Gulf of Mexico stock. Additional genetic samples from the U.S. Caribbean and surrounding areas are needed. Short-finned pilot whales of this stock are likely trans-boundary with, at a minimum, waters near adjacent Caribbean islands and are not likely to occur exclusively within the bounds of the U.S. EEZ.

POPULATION SIZE

The abundance of the Puerto Rico and U.S. Virgin Islands stock of short-finned pilot whales is unknown. A line-transect survey was conducted during January-March 1995 on NOAA Ship *Oregon II*, and was designed to cover a wide range of water depths surrounding Puerto Rico and the Virgin Islands. However, due to the bottom topography of the region and the size of the vessel, most waters surveyed were >200 m deep. Nine sightings of short-finned pilot whales were made, 8 of which occurred in and near U.S. waters (Rodon and Mullin 2000). Sightings occurred in water depths ranging from 549 to 7503 m. Another line-transect survey for humpback whales was conducted during February-March 2000 aboard NOAA Ship *Gordon Gunter* in the eastern and southern Caribbean Sea. A portion of the survey effort occurred in U.S. waters during transit, and 7 sightings of short-finned pilot whales were made, 1 of which occurred in U.S. waters near St. Croix. Sightings occurred in water depths ranging from 1006 to 2835 m (Swartz and Burks 2000). During February-March 2001 a line-transect survey was conducted in waters of the eastern Bahamas, eastern Dominican Republic, Puerto Rico and Virgin Islands. Eight sightings of short-finned pilot whales were made near Puerto Rico and the Virgin Islands (in and near U.S. waters) in water depths ranging from 806 to 7041 m (Swartz *et al.* 2002). It was not possible to estimate abundance from these surveys using line-transect methods due to so few sightings.

Minimum Population Estimate

Present data are insufficient to calculate a minimum population estimate for this stock of short-finned pilot whales.

Current Population Trend

There are insufficient data to determine the population trends for this stock.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. The maximum net productivity rate is assumed to be 0.04. This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow *et al.* 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential biological removal level (PBR) is the product of the minimum population size, one half the maximum net productivity rate and a recovery factor (MMPA Sec. 3.16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is unknown. The maximum productivity rate is 0.04, the default value for cetaceans. The “recovery” factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP), is assumed to be 0.5 because the stock is of unknown status. PBR for this stock of short-finned pilot whales is unknown.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

Estimates of annual human-caused mortality and serious injury are unknown for this stock.

Fisheries Information

The level of past or current, direct, human-caused mortality of short-finned pilot whales in Puerto Rico and the U.S. Virgin Islands is unknown. Pelagic swordfish, tunas and billfish are the targets of the longline fishery operating in the Caribbean Sea. There has been no reported fishing-related mortality of a short-finned pilot whale during recent years (2001-2009) in waters surrounding Puerto Rico or the U.S. Virgin Islands; however, interactions with pilot whales and the longline fishery have occurred in the Caribbean region off of Cuba (Garrison 2003; Garrison
and Richards 2004; Garrison 2005; Fairfield Walsh and Garrison 2006; Fairfield-Walsh and Garrison 2007; Fairfield and Garrison 2008; Garrison et al. 2009; Garrison and Stokes 2010). During 2004, 2 serious injuries were observed near Cuba, and estimated serious injuries attributable to the pelagic longline fishery in the Caribbean region during quarter 1 of 2004 were 19.3 short-finned pilot whales (CV=0.69; Garrison 2005). It is also important to note that for some recent years, 2006, 2008 and 2009, there has been no observer coverage of the pelagic longline fishery in the Caribbean region (Fairfield-Walsh and Garrison 2007; Garrison et al. 2009; Garrison and Stokes 2010).

A commercial fishery for short-finned pilot whales operated in the Caribbean Sea during the eighteenth and nineteenth centuries (Price 1985; Reeves et al. 2001). While no whaling occurs at present in the waters of Puerto Rico and the U.S. Virgin Islands, small-scale whaling, conducted by local whalers, is still carried out by the eastern Caribbean nations of Dominica, St. Lucia, and St. Vincent and the Grenadines (e.g., Rathjen and Sullivan 1970; Caldwell et al. 1971; Adams 1975; Caldwell and Caldwell 1975; Price 1985; Reeves 1988; Hoyt and Hvenegaard 2002; Romero et al. 2002; Mohammed et al. 2003; Vail 2005; World Council of Whalers 2008). Short-finned pilot whales are the most commonly hunted cetacean (e.g., Rathjen and Sullivan 1970; Caldwell et al. 1971; Adams 1975; Caldwell and Caldwell 1975; Reeves 1988; Hoyt and Hvenegaard 2002; Mohammed et al. 2003; Vail 2005; World Council of Whalers 2008), with a harvest averaging 300-450 annually (World Council of Whalers 2008).

Other Mortality

No short-finned pilot whales were found stranded in U.S. waters of the Caribbean Sea from 2005 through 2009 (NOAA National Marine Mammal Health and Stranding Response Database unpublished data, accessed 17 November 2010). Stranding data probably underestimate the extent of fishery-related mortality and serious injury because not all of the marine mammals which die or are seriously injured in fishery interactions wash ashore, not that wash ashore are discovered, reported or investigated, nor will all of those that do wash ashore necessarily show signs of entanglement or other fishery interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interactions.

The potential impact of coastal pollution may be an issue for this species in portions of its habitat. The U.S. Navy and the U.S. Marine Corps used the Atlantic Fleet Weapons Training Facility operated out of Vieques Island, Puerto Rico, from 1948 to 2003, including the training of pilots for live ordnance delivery and amphibious assault landings by the Marine Corps. The U.S. Environmental Protection Agency has designated parts of Vieques Island on the Superfund National Priorities List because various parts of the island and nearby waters have become contaminated by solid and/or hazardous waste resulting from decades of military activity (EPA 2009). Identified areas of concern include ship anchoring areas north of Vieques, waters impacted by target practice on eastern Vieques and waters near western Vieques. Remnants of exploded ordnance and large amounts of unexploded ordnance have been identified in the range areas of Vieques and in the surrounding waters. Hazardous substances associated with ordnance use may include lead, mercury, lithium, magnesium, copper, perchlorate, napalm, TNT, and depleted uranium, among others. At both the eastern and western ends of Vieques, hazardous materials present may also include an assortment of chemicals such as pesticides, solvents and PCBs (EPA 2009). The naval station at Roosevelt Roads in Puerto Rico operated from 1943 to 2004 (between 1943 and 1957 it was opened and closed multiple times). It operated as a major training site for fleet exercises, but potential impacts, if any, on short-finned pilot whales are unknown.

STATUS OF STOCK

The status of short-finned pilot whales, relative to OSP, in U.S. waters of the Caribbean Sea is unknown. The size of this stock or any population of short-finned pilot whales in the northeast Caribbean has never been assessed. The species is not listed as threatened or endangered under the Endangered Species Act. There are insufficient data to determine population trends for this stock. Total human-caused mortality and serious injury for this stock is not known. There is no systematic monitoring of all fisheries that may take this stock. There is insufficient information available to determine whether the total fishery-related mortality and serious injury for this stock is insignificant and approaching zero mortality and serious injury rate. For these reasons and because the stock size is currently unknown, PBR is undetermined, and there are documented interactions between short-finned pilot whales and the pelagic longline fishery in waters off Cuba, this stock is a strategic stock.

REFERENCES CITED

Mitchell, E. D. 1975. Porpoise, dolphin and small whale fisheries of the world. IUCN. Monograph No. 3 Morges, Switzerland: IUCN.

SPINNER DOLPHIN (*Stenella longirostris longirostris*):
Puerto Rico and U.S. Virgin Islands Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

The spinner dolphin is distributed worldwide in tropical to temperate oceanic waters (Leatherwood and Reeves 1983; Perrin and Gilpatrick 1994; Perrin 1998). Spinner dolphins have been sighted in Puerto Rico and the U.S. Virgin Islands as well as other areas of the Caribbean Sea. For example, Erdman *et al.* (1973) described 2 spinner dolphin sightings from Puerto Rico made during 1956. Taruski and Winn (1976) recorded spinner dolphins during the late 1960’s and early 1970’s in the vicinity of Puerto Rico and the Virgin Islands as well as a sighting off St. Vincent; sightings were made on the banks and in deeper waters (~37m-366m). Watkins and Moore (1982) sighted 5 groups off St. Vincent and the Grenadines in 1981, and Watkins *et al.* (1985) sighted 3 groups during 1983-1984 while surveying waters from Guadeloupe to St. Vincent and the Grenadines in the eastern Caribbean. Spinner dolphins were sighted off the west coast of Dominica in waters >100m during fieldwork conducted from 1995 to 1997 by Gordon *et al.* (1998). One sighting was made in deep waters (>2000m) west of Grenada by Yoshida *et al.* (2010) during a 2004 survey of eastern Caribbean waters. Jefferson and Lynn (1994) sighted 1 group of spinner dolphins in deep water (4330m) north of the Netherlands Antilles, and Debrot and Barros (1994) also reported a sighting in waters of the Netherlands Antilles near Curacao. Spinner dolphins have been described as fairly common in the eastern and central waters of Venezuela (Romero *et al.* 2001). Recently Pardo *et al.* (2009) reported an older sighting from 1988 of spinner dolphins in Panamanian waters at a depth of 548m, and described this as the first record for southwestern Caribbean waters. Photographic data confirmed the presence of the spinner dolphin off Cuba (Perrin *et al.* 1981).

Mignucci-Giannoni (1998) found 41 sightings records of spinner dolphins from published and unpublished data between 1956 and 1989 for waters of Puerto Rico and the U.S. and British Virgin Islands, and suggested spinner dolphins occur year-round but with fewer sightings during summer and fall. Seventy-two and a half percent of sightings documented by Mignucci-Giannoni (1998) were in continental shelf waters less than 183 m deep. One winter NMFS survey in 2001 sighted 2 groups of spinner dolphins in waters of Puerto Rico at depths of about 800 m (Figure 1; see Population Size section); however, most waters surveyed were >200 m deep due to the bottom topography of the region and the size of the survey vessel (Swartz *et al.* 2002). An additional NMFS winter survey in 2000 sighted spinner dolphins off Grenada in the southeastern Caribbean Sea at depths >1000 m. Additional surveys covering continental shelf, continental slope and oceanic waters of Puerto Rico and the U.S. Virgin Islands are needed to better assess spinner dolphin distribution in the area. Upon examination of stranding records from 1867 through 1995, 3 spinner dolphins were reported stranded in waters of Puerto Rico and the Virgin Islands (Mignucci-Giannoni *et al.* 1999).

![Distribution of spinner dolphin sightings from a SEFSC shipboard survey during winter of 2001. Solid lines indicate the 200-m and 2,000-m isobaths and the boundary of the U.S. EEZ.](image-url)
The Puerto Rico and U.S. Virgin Islands spinner dolphin population is provisionally being considered a separate stock for management purposes, although there is currently no information to differentiate this stock from the Atlantic Ocean and Gulf of Mexico stocks. Additional morphological, genetic and/or behavioral data are needed to provide further information on stock delineation. Spinner dolphins of this stock are likely trans-boundary with, at a minimum, waters near adjacent Caribbean islands and are not likely to occur exclusively within the bounds of the U.S. EEZ.

POPULATION SIZE

The abundance of the Puerto Rico and U.S. Virgin Islands stock of spinner dolphins is unknown. A line-transect survey was conducted during January-March 1995 on NOAA Ship *Oregon II*, and was designed to cover a wide range of water depths surrounding Puerto Rico and the Virgin Islands. However, due to the bottom topography of the region and the size of the vessel, most waters surveyed were >200 m deep; no sightings of spinner dolphins were made in U.S. or other waters (Rodent and Mullin 2000). Another line-transect survey for humpback whales was conducted during February-March 2000 aboard NOAA Ship *Gordon Gunter* in the eastern and southern Caribbean Sea. A portion of the survey effort occurred in U.S. waters during transit, but no spinner dolphins were seen. However, 2 sightings were made in waters off Grenada at depths >1000 m (Swartz and Burks 2000). During February-March 2001 a line-transect survey was conducted in waters of the eastern Bahamas, eastern Dominican Republic, Puerto Rico and Virgin Islands. Two sightings of spinner dolphins were made, both in U.S. waters, in depths of 759 and 831 m (Figure 1; Swartz *et al.* 2002). It was not possible to estimate abundance from these surveys using line-transect methods due to so few sightings.

Minimum Population Estimate

Present data are insufficient to calculate a minimum population estimate for this stock of spinner dolphins.

Current Population Trend

There are insufficient data to determine the population trends for this stock.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. The maximum net productivity rate is assumed to be 0.04. This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow *et al.* 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential biological removal level (PBR) is the product of minimum population size, one-half the maximum productivity rate and a recovery factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The maximum productivity rate is 0.04, the default value for cetaceans. The “recovery” factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP), is assumed to be 0.5 because the stock is of unknown status. PBR for this stock of spinner dolphins is unknown.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

Estimates of annual human-caused mortality and serious injury are unknown for this stock.

Fisheries Information

The level of past or current, direct, human-caused mortality of spinner dolphins in U.S. waters of the Caribbean Sea is unknown. Pelagic swordfish, tunas and billfish are the targets of the longline fishery operating in the Caribbean Sea. There has been no reported fishing-related mortality of a spinner dolphin during recent years (2001-2009) in waters surrounding Puerto Rico or the U.S. Virgin Islands (Garrison 2003; Garrison and Richards 2004; Garrison 2005; Fairfield Walsh and Garrison 2006; Fairfield-Walsh and Garrison 2007; Fairfield and Garrison 2008; Garrison *et al.* 2009; Garrison and Stokes 2010). However, it is important to note that for some recent years, 2006, 2008 and 2009, there has been no observer coverage of the pelagic longline fishery in the Caribbean region (Fairfield-Walsh and Garrison 2007; Garrison *et al.* 2009; Garrison and Stokes 2010).

While no whaling or dolphin fishery occurs at present in the waters of Puerto Rico and the U.S. Virgin Islands, small-scale whaling and dolphin fisheries, conducted by local whalers, are still carried out by the eastern Caribbean nations of Dominica, St. Lucia, and St. Vincent and the Grenadines (e.g., Caldwell *et al.* 1971; Caldwell and Caldwell 1975; Price 1985; Reeves 1988; Hoyt and Hvenegaard 2002; Romero *et al.* 2002; Mohammed *et al.* 2003;
World Council of Whalers 2008), and by Venezuela (Romero et al. 1997; Romero et al. 2002). It is difficult to
determine the extent that the spinner dolphin, or any other particular dolphin species, has been taken in the dolphin
fisheries because the smaller cetacean species hunted have generally been lumped by weight under the heading
“porpoise” and reported as such (Caldwell and Caldwell 1975; Price 1985), and it is difficult to identify animals to
species based on common names used by local fisherman (Reeves 1988). However, the spinner dolphin has been
and is still being taken in dolphin fisheries in the eastern and southern Caribbean Sea (e.g., Caldwell et al. 1971;
Caldwell and Caldwell 1975; Gaskin and Smith 1977; Romero et al. 1997; Romero et al. 2002; Mohammed et al.
2003). Reeves (1988) suggested that dolphins belonging to the genus Stenella are commonly caught off St. Lucia.

Other Mortality

One spinner dolphin was found stranded in U.S. waters of the Caribbean Sea from 2005 through 2009 (NOAA
No evidence of human interactions (e.g., gear entanglement, mutilation, gunshot wounds) was found for this
stranded animal. Stranding data probably underestimate the extent of fishery-related mortality and serious injury
because not all of the marine mammals which die or are seriously injured in fishery interactions wash ashore, not all
that wash ashore are discovered, reported or investigated, nor will all of those that do wash ashore necessarily show
signs of entanglement or other fishery-interaction. Finally, the level of technical expertise among stranding network
personnel varies widely as does the ability to recognize signs of fishery interactions.

The potential impact of coastal pollution may be an issue for this species in portions of its habitat. The U.S.
Navy and the U.S. Marine Corps used the Atlantic Fleet Weapons Training Facility operated out of Vieques Island,
Puerto Rico, from 1948 to 2003, including the training of pilots for live ordnance delivery and amphibious assault
landings by the Marine Corps. The U.S. Environmental Protection Agency has designated parts of Vieques Island on
the Superfund National Priorities List because various parts of the island and nearby waters have become
contaminated by solid and/or hazardous waste resulting from decades of military activity (EPA 2009). Identified
areas of concern include ship anchoring areas north of Vieques, waters impacted by target practice on eastern
Vieques and waters near western Vieques. Remnants of exploded ordnance and large amounts of unexploded
ordnance have been identified in the range of Vieques and in the surrounding waters. Hazardous substances
associated with ordnance use may include lead, mercury, lithium, magnesium, copper, perchlorate, napalm, TNT,
and depleted uranium, among others. At both the eastern and western ends of Vieques, hazardous materials present
may also include an assortment of chemicals such as pesticides, solvents and PCBs (EPA 2009). The naval station at
Roosevelt Roads in Puerto Rico operated from 1943 to 2004 (between 1943 and 1957 it was opened and closed
multiple times). It operated as a major training site for fleet exercises, but potential impacts, if any, on spinner
dolphins are unknown.

STATUS OF STOCK

The status of spinner dolphins, relative to OSP, in U.S. waters of the Caribbean Sea is unknown. The size of this
stock or any population of spinner dolphins in the northeast Caribbean has never been assessed. The species is not
listed as threatened or endangered under the Endangered Species Act. There are insufficient data to determine
population trends for this stock. Total human-caused mortality and serious injury for this stock is not known. There
is no systematic monitoring of all fisheries that may take this stock. There is insufficient information available to
determine whether the total fishery-related mortality and serious injury for this stock is insignificant and
approaching zero mortality and serious injury rate. For these reasons and because the stock size is currently
unknown and PBR undetermined, this stock is a strategic stock.

REFERENCES CITED

Caldwell, D. K. and M. C. Caldwell. 1975. Dolphin and small whale fisheries of the Caribbean and West Indies:
Occurrence, history, and catch statistics – with special reference to the Lesser Antillean island of St.

ATLANTIC SPOTTED DOLPHIN (*Stenella frontalis*):
Puerto Rico and U.S. Virgin Islands Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

There are 2 species of spotted dolphin in the Atlantic Ocean, the Atlantic spotted dolphin, *Stenella frontalis*, formerly *S. plagiodon*, and the pantropical spotted dolphin, *S. attenuata* (Perrin et al. 1987). The Atlantic spotted dolphin occurs in 2 forms which may be distinct sub-species (Perrin et al. 1987, 1994; Rice 1998): the large, heavily spotted form which inhabits the continental shelf and is usually found inside or near the 200m isobath, and the smaller, less spotted island and offshore form which occurs in the Atlantic Ocean and Caribbean Sea but is not known to occur in the Gulf of Mexico (Fulling et al. 2003; Mullin and Fulling 2003; Mullin and Fulling 2004). Where they co-occur, the offshore form of the Atlantic spotted dolphin and the pantropical spotted dolphin can be difficult to differentiate at sea. In the Caribbean, the Atlantic spotted dolphin and the pantropical spotted dolphin are sympatric, but the Atlantic spotted dolphin is believed to be more common and abundant (Mignucci-Giannoni et al. 2003).

Early records of spotted dolphin sightings in the Caribbean are difficult to interpret prior to the Perrin et al. (1987) revision of the spotted dolphins due to confusion over the names, descriptions and number of “spotted” dolphin species. Some references, like Caldwell et al. (1971), Caldwell and Caldwell (1975) and Taruski and Winn (1976) clearly distinguished 2 species (with different names) as they are accepted presently (Roden and Mullin 2000). Mignucci-Giannoni (1998) found 31 sighting records of Atlantic spotted dolphins (following Perrin et al. 1987) from published and unpublished data between 1958 and 1989 for waters of Puerto Rico and the U.S. and British Virgin Islands, and suggested they occur year-round but with fewer sightings during spring and summer. Eighty-five percent of sightings documented by Mignucci-Giannoni (1998) were in waters less than 183m deep. Three winter NMFS surveys in 1995, 2000 and 2001 sighted Atlantic spotted dolphins in waters of Puerto Rico and the U.S. Virgin Islands and surrounding areas in a wide range of depths in continental slope and oceanic waters (Figure 1); however most waters surveyed were >200m deep due to the bottom topography of the region and the size of the survey vessel (see Population Size section). Examination of stranding records from 1867 through 1995 indicated Atlantic spotted dolphins were one of the most common species to strand in Puerto Rico and the Virgin Islands (Mignucci-Giannoni et al. 1999). Atlantic spotted dolphins have recently been described as 1 of 2 predominant species (the other predominant species being the bottlenose dolphin) off the southeastern coast of the Dominican Republic (Whaley et al. 2006), and they have also been sighted in Samana Bay in the northern Dominican Republic (Mattila et al. 1994; Whaley et al. 2006).

The Puerto Rico and U.S. Virgin Islands Atlantic spotted dolphin population is provisionally being considered a

Figure 1. Distribution of Atlantic spotted dolphin sightings from SEFSC shipboard surveys during winter of 1995, 2000 and 2001. Solid lines indicate the 200-m and 2,000-m isobaths and the boundary of the U.S. EEZ.
separate stock for management purposes, although there is currently no information to differentiate this stock from the Atlantic Ocean and Gulf of Mexico stocks. In a recent study, Adams and Rosel (2005) presented strong genetic support for differentiation between Gulf of Mexico and western North Atlantic management stocks using both mitochondrial and nuclear markers. Additional morphological, genetic and/or behavioral data are needed to provide further information on stock delineation for the Puerto Rico and U.S. Virgin Islands stock. Atlantic spotted dolphins of this stock are likely trans-boundary with, at a minimum, waters near adjacent Caribbean islands and are not likely to occur exclusively within the bounds of the U.S. EEZ.

POPULATION SIZE
The abundance of the Puerto Rico and U.S. Virgin Islands stock of Atlantic spotted dolphins is unknown. A line-transect survey was conducted during January-March 1995 on NOAA Ship Oregon II, and was designed to cover a wide range of water depths surrounding Puerto Rico and the Virgin Islands. However, due to the bottom topography of the region and the size of the vessel, most waters surveyed were >200 m deep; 6 sightings of Atlantic spotted dolphins were made in U.S. waters (Rodén and Mullin 2000). Sightings occurred in water depths ranging from 1098 to 2965 m. Another line-transect survey for humpback whales was conducted during February-March 2000 aboard NOAA Ship Gordon Gunter in the eastern and southern Caribbean Sea. A portion of the survey effort occurred in U.S. waters during transit, and 1 sighting of Atlantic spotted dolphins was made at a depth of 893 m (Swartz and Burks 2000). During February-March 2001 a line-transect survey was conducted in waters of the eastern Bahamas, eastern Dominican Republic, Puerto Rico and Virgin Islands. Ten sightings of Atlantic spotted dolphins were made, all in U.S. waters, ranging in depths from 452 to 4499 m (Swartz et al. 2002). It was not possible to estimate abundance from these surveys using line-transect methods due to so few sightings.

Minimum Population Estimate
Present data are insufficient to calculate a minimum population estimate for this stock of Atlantic spotted dolphins.

Current Population Trend
There are insufficient data to determine the population trends for this stock.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES
Current and maximum net productivity rates are unknown for this stock. The maximum net productivity rate is assumed to be 0.04. This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL
Potential biological removal level (PBR) is the product of minimum population size, one-half the maximum productivity rate and a recovery factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The maximum productivity rate is 0.04, the default value for cetaceans. The “recovery” factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP), is assumed to be 0.5 because the stock is of unknown status. PBR for this stock of Atlantic spotted dolphins is unknown.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY
Estimates of annual human-caused mortality and serious injury are unknown for this stock.

Fisheries Information
The level of past or current, direct, human-caused mortality of Atlantic spotted dolphins in U.S. waters of the Caribbean Sea is unknown. Pelagic swordfish, tunas and billfish are the targets of the longline fishery operating in the Caribbean Sea. There has been no reported fishing-related mortality of an Atlantic spotted dolphin during recent years (2001-2009) in waters surrounding Puerto Rico or the U.S. Virgin Islands (Garrison 2003; Garrison and Richards 2004; Garrison 2005; Fairfield Walsh and Garrison 2006; Fairfield-Walsh and Garrison 2007; Fairfield and Garrison 2008; Garrison et al. 2009; Garrison and Stokes 2010). However, it is important to note that for some recent years, 2006, 2008 and 2009, there has been no observer coverage of the pelagic longline fishery in the Caribbean region (Fairfield-Walsh and Garrison 2007; Garrison et al. 2009; Garrison and Stokes 2010).

While no whaling or dolphin fishery occurs at present in the waters of Puerto Rico and the U.S. Virgin Islands,
small-scale whaling and dolphin fisheries, conducted by local whalers, are still carried out by the eastern Caribbean nations of Dominica, St. Lucia, and St. Vincent and the Grenadines (e.g., Caldwell et al. 1971; Caldwell and Caldwell 1975; Price 1985; Reeves 1988; Hoyt and Hvenegaard 2002; Romero et al. 2001; Mohammed et al. 2003; World Council of Whalers 2008), and by Venezuela (Romero et al. 2001). It is difficult to determine the extent that the Atlantic spotted dolphin, or any other particular dolphin species, has been taken in the dolphin fisheries because the smaller cetacean species hunted have generally been lumped by weight under the heading “porpoise” and reported as such (Caldwell and Caldwell 1975; Price 1985), and it is difficult to identify animals to species based on common names used by local fisherman (Reeves 1988). However, the Atlantic spotted dolphin has been and is still being taken in dolphin fisheries in the eastern and southern Caribbean Sea (e.g., Caldwell et al. 1971; Caldwell and Caldwell 1975; Romero et al. 2001; Mohammed et al. 2003; Vail 2005). Reeves (1988) suggested that dolphins belonging to the genus *Stenella* are commonly caught off St. Lucia.

Other Mortality

No Atlantic spotted dolphins were found stranded in U.S. waters of the Caribbean Sea from 2005 through 2009 (NOAA National Marine Mammal Health and Stranding Response Database unpublished data, accessed 17 November 2010). Stranding data probably underestimate the extent of fishery-related mortality and serious injury because not all of the marine mammals which die or are seriously injured in fishery interactions wash ashore, not all that wash ashore are discovered, reported or investigated, nor will all of those that do wash ashore necessarily show signs of entanglement or other fishery-interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interactions.

The potential impact of coastal pollution may be an issue for this species in portions of its habitat. The U.S. Navy and the U.S. Marine Corps used the Atlantic Fleet Weapons Training Facility operated out of Vieques Island, Puerto Rico, from 1948 to 2003, including the training of pilots for live ordnance delivery and amphibious assault landings by the Marine Corps. The U.S. Environmental Protection Agency has designated parts of Vieques Island on the Superfund National Priorities List because various parts of the island and nearby waters have become contaminated by solid and/or hazardous waste resulting from decades of military activity (EPA 2009). Identified areas of concern include ship anchoring areas north of Vieques, waters impacted by target practice on eastern Vieques and waters near western Vieques. Remnants of exploded ordnance and large amounts of unexploded ordnance have been identified in the range areas of Vieques and in the surrounding waters. Hazardous substances associated with ordnance use may include lead, mercury, lithium, magnesium, copper, perchlorate, napalm, TNT, and depleted uranium, among others. At both the eastern and western ends of Vieques, hazardous materials present may also include an assortment of chemicals such as pesticides, solvents and PCBs (EPA 2009). The naval station at Roosevelt Roads in Puerto Rico operated from 1943 to 2004 (between 1943 and 1957 it was opened and closed multiple times). It operated as a major training site for fleet exercises, but potential impacts, if any, on Atlantic spotted dolphins are unknown.

STATUS OF STOCK

The status of Atlantic spotted dolphins, relative to OSP, in U.S. waters of the Caribbean Sea is unknown. The size of this stock or any population of Atlantic spotted dolphins in the northeast Caribbean has never been assessed. The species is not listed as threatened or endangered under the Endangered Species Act. There are insufficient data to determine population trends for this stock. Total human-caused mortality and serious injury for this stock is not known. There is no systematic monitoring of all fisheries that may take this stock. There is insufficient information available to determine whether the total fishery-related mortality and serious injury for this stock is insignificant and approaching zero mortality and serious injury rate. For these reasons and because the stock size is currently unknown and PBR undetermined, this stock is a strategic stock.

REFERENCES CITED

SEFSC-438. 31 pp.

APPENDIX I: Estimated serious injury and mortality (SI&M) of Western North Atlantic marine mammals listed by U.S. observed fisheries for 2005-2009. Marine mammal species with zero (0) observed SI&M during 2005 to 2009 are not shown in this table. (tbd = to be determined; unk = unknown).

<table>
<thead>
<tr>
<th>Category, Fishery, Species</th>
<th>Yrs. observed</th>
<th>observer coverage</th>
<th>Est. SI by Year (CV)</th>
<th>Est. Mortality by Year (CV)</th>
<th>Mean Annual Mortality (CV)</th>
<th>PBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>CATEGORY I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gillnet Fisheries: Northeast gillnet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harbor porpoise - after Take Reduction Plan</td>
<td>2005-2009</td>
<td>.07, .04, .07, .05, .04</td>
<td>630(.23), 514(.31), 395(.38), 666 (.48), 591(.23)</td>
<td>559 (0.16)</td>
<td>701</td>
<td></td>
</tr>
<tr>
<td>Atlantic white sided dolphin</td>
<td>2005-2009</td>
<td>.07, .04, .07, .05, .04</td>
<td>59(.49), 41(.71), 0, 81(.57), 0</td>
<td>36(.34)</td>
<td>190</td>
<td></td>
</tr>
<tr>
<td>Short-beaked common dolphin</td>
<td>2005-2009</td>
<td>.07, .04, .07, .05, .04</td>
<td>26(.8), 20(1.05), 11(0.94), 34(.77), 43(.77)</td>
<td>26 (.39)</td>
<td>1,000</td>
<td></td>
</tr>
<tr>
<td>Risso's dolphin</td>
<td>2005-2009</td>
<td>.07, .04, .07, .05, .04</td>
<td>15 (.93), 0, 0, 0, 0</td>
<td>3.0(93)</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td>Bottlenose dolphin (offshore)</td>
<td>2002-2006</td>
<td>.02, .03, .06, .07, .04</td>
<td>0, 0, 0, unk, unk</td>
<td>unk</td>
<td>566</td>
<td></td>
</tr>
<tr>
<td>Harbor seal</td>
<td>2005-2009</td>
<td>.07, .04, .07, .05, .04</td>
<td>719(20), 87(.58), 93 (.49), 243(.41), 516(.28)</td>
<td>332(14)</td>
<td>undet.</td>
<td></td>
</tr>
<tr>
<td>Gray seal</td>
<td>2005-2009</td>
<td>.07, .04, .07, .05, .04</td>
<td>574(.44), 248(.47), 889(0.24), 618(23), 1063(26)</td>
<td>678 (0.14)</td>
<td>unk</td>
<td></td>
</tr>
<tr>
<td>Harp seal</td>
<td>2005-2009</td>
<td>.07, .04, .07, .05, .04</td>
<td>35(.68), 65(.66), 119(35), 238(38), 415(27)</td>
<td>174(0.18)</td>
<td>unk</td>
<td></td>
</tr>
<tr>
<td>Gillnet Fisheries: US Mid-Atlantic gillnet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harbor porpoise - after Take Reduction Plan</td>
<td>2005-2009</td>
<td>.03, .04, .06, .03, .03</td>
<td>470(.51), 511(.32), 58(1.03), 350(.75), 201(.55)</td>
<td>318(.26)</td>
<td>701</td>
<td></td>
</tr>
<tr>
<td>Bottlenose dolphin (offshore)</td>
<td>2002-2006</td>
<td>.01, .01, .02, .03, .04</td>
<td>unk, 0, 0, unk, unk</td>
<td>unk</td>
<td>566</td>
<td></td>
</tr>
<tr>
<td>Short-beaked common dolphin</td>
<td>2005-2009</td>
<td>.03, .04, .06, .03, .03</td>
<td>0, 11(1.03), 0, 0, 0</td>
<td>2.2(1.03)</td>
<td>1,000</td>
<td></td>
</tr>
<tr>
<td>Risso's dolphin</td>
<td>2005-2009</td>
<td>.03, .04, .06, .03, .03</td>
<td>0, 0, 34(.73), 0, 0</td>
<td>6.6(73)</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td>Harbor seal</td>
<td>2005-2009</td>
<td>.03, .04, .06, .03, .03</td>
<td>63(.67), 26 (.98), 0, 88(.74), 47(.68)</td>
<td>45(.39)</td>
<td>undet.</td>
<td></td>
</tr>
<tr>
<td>Harp Seal</td>
<td>2005-2009</td>
<td>.03, .04, .06, .03, .03</td>
<td>0, 0, 38(.9), 176(.74), 70(.67)</td>
<td>57 (0.50)</td>
<td>unk</td>
<td></td>
</tr>
<tr>
<td>Longline Fisheries: Pelagic longline (excluding NED-E)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risso's dolphin</td>
<td>2005-2009</td>
<td>.06, .07, .08, .10, .14</td>
<td>3(1.0), 0, 9 (.65), 17(.73), 11(71)</td>
<td>0, 0, 0, 0, 0</td>
<td>8.0 (.40)</td>
<td>124</td>
</tr>
<tr>
<td>Long and short-finned pilot whale "</td>
<td>2005-2009</td>
<td>.06, .07, .08, .14, .10</td>
<td>212(21), 169(.50), 57(.65), 98(.42), 17(.70)</td>
<td>0, 16 (1.0), 0, 0, 0</td>
<td>114 (.20)</td>
<td>172/93</td>
</tr>
</tbody>
</table>

203
<table>
<thead>
<tr>
<th>Species</th>
<th>2005-2009</th>
<th>.06, .07, .08, .14, .10</th>
<th>0, 0, 0, 0, 0</th>
<th>0, 0, 0, 0, 8.5(1.0)</th>
<th>1.7(1.0)</th>
<th>1,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>CATEGORY II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mid-Atlantic Mid-Water Trawl – Including Pair Trawl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risso’s dolphin</td>
<td>2005-2009</td>
<td>.084, .089, .039, .13, .13</td>
<td>0, 0, 0, 0, 0</td>
<td>0, 0, 0, unk, 0</td>
<td>unk</td>
<td>124</td>
</tr>
<tr>
<td>White-sided dolphin</td>
<td>2005-2009</td>
<td>.084, .089, .039, .13, .13</td>
<td>0, 0, 0, 0, 0</td>
<td>58(1.02), 29(.74), 12(.98), 15(.73), 43(.92)</td>
<td>24(.55)</td>
<td>190</td>
</tr>
<tr>
<td>Short-beaked common dolphin</td>
<td>2005-2009</td>
<td>.084, .089, .039, .13, .13</td>
<td>0, 0, 0, 0, 0</td>
<td>0, 0, 12(.70), 0, 0</td>
<td>0.6(.70)</td>
<td>1,000</td>
</tr>
<tr>
<td>Long and short-finned pilot whale</td>
<td>2005-2009</td>
<td>.084, .089, .039, .13, .13</td>
<td>0, 0, 0, 0, 0</td>
<td>0, 0, 12(.99), 0, 0</td>
<td>2.4(99)</td>
<td>172/93</td>
</tr>
<tr>
<td>Trawl Fisheries: Northeast bottom trawl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harp seal</td>
<td>2005-2009</td>
<td>.12, .06, .06, .08, .09</td>
<td>0, 0, 0, 0, 0</td>
<td>unk, 0, 0, 0, unk</td>
<td>unk</td>
<td>unk</td>
</tr>
<tr>
<td>Harbor seal</td>
<td>2005-2009</td>
<td>.12, .06, .06, .08, .09</td>
<td>0, 0, 0, 0, 0</td>
<td>unk, 0, unk, 0, unk</td>
<td>unk</td>
<td>undet</td>
</tr>
<tr>
<td>Gray Seal</td>
<td>2005-2009</td>
<td>.12, .06, .06, .08, .09</td>
<td>0, 0, 0, 0, 0</td>
<td>unk, 0, unk, unk, unk</td>
<td>unk</td>
<td>unk</td>
</tr>
<tr>
<td>Long and short-finned pilot whale *</td>
<td>2005-2009</td>
<td>.12, .06, .06, .08, .09</td>
<td>0, 0, 0, 0, 0</td>
<td>15(30), 14(.28), 12(.35), 10(.34), 8.6(.35)</td>
<td>12(0.14)</td>
<td>172/93</td>
</tr>
<tr>
<td>Short-beaked common dolphin</td>
<td>2005-2009</td>
<td>.12, .06, .06, .08, .09</td>
<td>0, 0, 0, 0, 0</td>
<td>32(28), 25(.28), 24(.28), 17(.29), 19(.30)</td>
<td>23(.13)</td>
<td>1,000</td>
</tr>
<tr>
<td>Atlantic white-sided dolphin</td>
<td>2005-2009</td>
<td>.12, .06, .06, .08, .09</td>
<td>0, 0, 0, 0, 0</td>
<td>213(28), 164(.34), 147(.35), 147(.32), 131(.26)</td>
<td>160(0.14)</td>
<td>190</td>
</tr>
<tr>
<td>Minke whale</td>
<td>2005-2009</td>
<td>.12, .06, .06, .08, .09</td>
<td>0, 0, 0, 0, 0</td>
<td>4.8(.75), 3.7(.73), 3.2(.72), 2.9(.73), 2.9(.75)</td>
<td>3.5(.34)</td>
<td>69</td>
</tr>
<tr>
<td>Harbor porpoise</td>
<td>2005-2009</td>
<td>.12, .06, .06, .08, .09</td>
<td>0, 0, 0, 0, 0</td>
<td>7.2(48), 6.5(49), 5.6(46), 5.3(47), 5.1(50)</td>
<td>6.0(0.22)</td>
<td>701</td>
</tr>
<tr>
<td>Mid-Atlantic Bottom Trawl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atlantic white-sided dolphin</td>
<td>2005-2009</td>
<td>.03, .02, .03, .03, .05</td>
<td>0, 0, 0, 0, 0</td>
<td>38(29), 26(25), 21(24), 16(18), 16(16)</td>
<td>23(12)</td>
<td>190</td>
</tr>
<tr>
<td>Long and short-finned pilot whale *</td>
<td>2005-2009</td>
<td>.03, .02, .03, .03, .05</td>
<td>0, 0, 0, 0, 0</td>
<td>31(31), 37(34), 36(38), 24(36), 23(36)</td>
<td>30(16)</td>
<td>172/93</td>
</tr>
<tr>
<td>Short-beaked common dolphin</td>
<td>2005-2009</td>
<td>.03, .02, .03, .03, .05</td>
<td>0, 0, 0, 0, 0</td>
<td>141(29), 131(28), 66(27), 108(28), 104(29)</td>
<td>110(13)</td>
<td>1,000</td>
</tr>
<tr>
<td>Northeast Mid-Water Trawl Including Pair Trawl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long and short-finned pilot whale</td>
<td>2005-2009</td>
<td>.199, .031, .08, .20, .42</td>
<td>0, 0, 0, 0, 0</td>
<td>0, 0, 0, 16(.61), 0</td>
<td>3.2(.61)</td>
<td>172/93</td>
</tr>
<tr>
<td>White-sided dolphin</td>
<td>2005-2009</td>
<td>.199, .031, .08, .20, .42</td>
<td>0, 0, 0, 0, 0</td>
<td>0, 9(.103), 0, 0, 0</td>
<td>1.9(.03)</td>
<td>190</td>
</tr>
<tr>
<td>Harbor seal</td>
<td>2005-2009</td>
<td>.199, .031, .08, .20, .42</td>
<td>0, 0, 0, 0, 0</td>
<td>0, 0, 0, 1.3(81)</td>
<td>0.3(81)</td>
<td>undet</td>
</tr>
</tbody>
</table>

NOTES:

a. As of 2010, the PBR for pilot whales has been split. Short-finned pilot whale PBR is 172 and long-finned pilot whale is 93.
Appendix II. Summary of the confirmed human-caused mortality and serious injury (SI) events involving baleen whale stocks along the Gulf of Mexico Coast, US East Coast, and adjacent Canadian Maritimes, 2005-2009, with number of events attributed to entanglements or vessel collisions by year.

<table>
<thead>
<tr>
<th>Stock</th>
<th>Mean annual mortality and SI rate (PBR(^1) for reference)</th>
<th>Entanglements</th>
<th>Vessel Collisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Western North Atlantic right whale (Eubalaena glacialis)</td>
<td>2.4 (0.8)</td>
<td>0.8 (0.8/0)</td>
<td>(0, 1, 1, 0, 0)</td>
</tr>
<tr>
<td>Gulf of Maine humpback whale (Megaptera novaeangliae)</td>
<td>5.2 (1.1)</td>
<td>3.8 (3.4/0.4)</td>
<td>(0, 1, 1, 2, 2)</td>
</tr>
<tr>
<td>Western North Atlantic fin whale (Balaenoptera physalus)</td>
<td>2.6 (6.5)</td>
<td>0.8 (0.6/0.2)</td>
<td>(0, 0, 2, 0, 0)</td>
</tr>
<tr>
<td>Nova Scotian sei whale (B. borealis)</td>
<td>1.2 (0.4)</td>
<td>0.6 (0.4/0.2)</td>
<td>(0, 0, 0, 1, 0)</td>
</tr>
<tr>
<td>Western North Atlantic blue whale(^2) (B. musculus)</td>
<td>0 (–)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Canadian East Coast minke whale (B. acutorostrata)</td>
<td>2.4 (69)</td>
<td>2.0 (0.8/1.2)</td>
<td>(1, 1, 1, 4, 0)</td>
</tr>
<tr>
<td>Western North Atlantic Bryde’s whale (B. edeni)</td>
<td>0.2 (0.1)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\(^1\) Potential Biological Removal (PBR)
\(^2\) Stock abundance estimates outdated; no PBR established for this stock.
Appendix III
Fishery Descriptions

This appendix is broken into two parts: Part A describes commercial fisheries that have documented interactions with marine mammals in the Atlantic Ocean; and Part B describes commercial fisheries that have documented interactions with marine mammals in the Gulf of Mexico. A complete list of all known fisheries for both oceanic regions, the 2011 List of Fisheries, is published in the Federal Register, (75 FR 68468, November 8, 2010). Each part of this appendix contains three sections: I. data sources used to document marine mammal mortality/entanglements and commercial fishing effort trip locations, II. fishery descriptions for Category I, II and III fisheries that have documented interactions with marine mammals and their historical level of observer coverage, and III. historical fishery descriptions.

Part A. Description of U.S Atlantic Commercial Fisheries

I. Data Sources

 Items 1-5 describe sources of marine mammal mortality, serious injury or entanglement data; items 6-8 describe the sources of commercial fishing effort data used to summarize different components of each fishery (i.e. active number of permit holders, total effort, temporal and spatial distribution) and generate maps depicting the location and amount of fishing effort.

1. Northeast Region Fisheries Observer Program (NEFOP)

 In 1989 a Fisheries Observer Program was implemented in the Northeast Region (Maine-Rhode Island) to document incidental bycatch of marine mammals in the Northeast Region Multi-species Gillnet Fishery. In 1993 sampling was expanded to observe bycatch of marine mammals in Gillnet Fisheries in the Mid-Atlantic Region (New York-North Carolina). The Northeast Fisheries Observer Program (NEFOP) has since been expanded to sample multiple gear types in both the Northeast and Mid-Atlantic Regions for documenting and monitoring interactions of marine mammals, sea turtles and finfish bycatch attributed to commercial fishing operations. At sea observers onboard commercial fishing vessels collect data on fishing operations, gear and vessel characteristics, kept and discarded catch composition, bycatch of protected species, animal biology, and habitat (NMFS-NEFSC 2003).

2. Southeast Region Fishery Observer Programs

 Three Fishery Observer Programs are managed by the Southeast Fisheries Science Center (SEFSC) that observe commercial fishery activity in U.S. Atlantic waters. The Pelagic Longline Observer Program (POP) administers a mandatory observer program for the U.S. Atlantic Large Pelagics Longline Fishery. The program has been in place since 1992 and randomly allocates observer effort by eleven geographic fishing areas proportional to total reported effort in each area and quarter. Observer coverage levels are mandated under the Highly Migratory Species Fisheries Management Plan (HMS FMP, 50 CFR Part 635). The second program is the Shark Gillnet Observer Program that observes the Southeastern U.S. Atlantic Shark Gillnet Fishery. The Observer Program is mandated under the HMS FMP, the Atlantic Large Whale Take Reduction Plan (ALWTRP) (50 CFR Part 229.32), and the Biological Opinion under Section 7 of the Endangered Species Act. Observers are deployed on any active fishing vessel reporting shark drift gillnet effort. In 2005, this program also began to observe sink gillnet fishing for sharks along the southeastern U.S. coast. The observed fleet includes vessels with an active directed shark permit and fish with sink gillnet gear (Carlson and Betha 2007). The third program is the Southeastern Shrimp Otter Trawl Fishery Observer Program. Prior to 2007, this was a voluntary program administered by SEFSC in cooperation with the Gulf and South Atlantic Fisheries Foundation. The program was funding and project dependent, therefore observer coverage is not necessarily randomly allocated across the fishery. In 2007, the observer program was expanded, and it became mandatory for fishing vessels to take an observer if selected. The program now includes more systematic sampling of the fleet based upon reported landings and effort patterns. The total level of observer coverage for this program is approximately 1% of the total fishery effort. In each Observer Program, the observers record information on the total target species catch, the number and type of interactions with protected species (including both marine mammals and sea turtles), and biological information on species caught.

3. Regional Marine Mammal Stranding Networks

 The Northeast and Southeast Region Stranding Networks are components of the Marine Mammal Health and
Stranding Response Program (MMHSRP). The goals of the MMHSRP are to facilitate collection and dissemination of data, assess health trends in marine mammals, correlate health with other biological and environmental parameters, and coordinate effective responses to unusual mortality events (Becker et al. 1994). Since 1997, the Northeast Region Marine Mammal Stranding Network has been collecting and storing data on marine mammal strandings and entanglements that occur from Maine through Virginia. The Southeast Region Strandings Program is responsible for data collection and stranding response coordination along the Atlantic coast from North Carolina to Florida, along the U.S. Gulf of Mexico coast from Florida through Texas, and in the U.S. Virgin Islands and Puerto Rico. Prior to 1997, stranding and entanglement data were maintained by the New England Aquarium and the National Museum of Natural History, Washington, D.C. Volunteer participants, acting under a letter of agreement, collect data on stranded animals that include: species; event date and location; details of the event (i.e., signs of human interaction) and determination on cause of death; animal disposition; morphology; and biological samples. Collected data are reported to the appropriate Regional Stranding Network Coordinator and are maintained in regional and national databases.

4. Marine Mammal Authorization Program

Commercial fishing vessels engaging in Category I or II fisheries are required to register under the Marine Mammal Authorization Program (MMAP) in order to lawfully take non-endangered/threatened marine mammal incidental to fishing operations. All vessel owners, regardless of the category of fishery they are operating in, are required to report all incidental injuries and mortalities of marine mammals that have occurred as a result of fishing operations (NMFS-OPR 2003). Events are reported by fishermen on Mortality/Injury forms then submitted to and maintained by the NMFS Office of Protected Resources within 48 hours of the incident even if an observer has recorded the take. The data reported include: captain and vessel demographics; gear type and target species; date, time and location of event; type of interaction; animal species; mortality or injury code; and number of interactions. Reporting forms are available online at www.nero.noaa.gov/mmap.

5. Other Data Sources for Protected Species Interactions/Entanglements/Ship Strikes

In addition to the above, data on fishery interactions/entanglements and vessel collisions with large cetaceans are reported from a variety of other sources including the New England Aquarium (Boston, Massachusetts); Provincetown Center for Coastal Studies (Provincetown, Massachusetts); U.S. Coast Guard; whale watch vessels; Canadian Department of Fisheries and Oceans (DFO); ; and members of the Atlantic Large Whale Disentanglement Network. These data, photographs, etc. are maintained by the Protected Species Division at the Northeast Regional Office (NERO), the Protected Species Branch at the Northeast Fisheries Science Center (NEFSC) and the SEFSC.

6. Northeast Region Vessel Trip Reports

The Northeast Region Vessel Trip Report Data Collection System is a mandatory, but self-reported, commercial fishing effort database (Wigley et al. 1998). The data collected include: species kept and discarded; gear types used; trip location; trip departure and landing dates; port; and vessel and gear characteristics. The reporting of these data is mandatory only for vessels fishing under a federal permit. Vessels fishing under a federal permit are required to report in the Vessel Trip Report even when they are fishing within state waters.

7. Southeast Region Fisheries Logbook System

The Fisheries Logbook System (FLS) is maintained at the SEFSC and manages data submitted from mandatory Fishing Vessel Logbook Programs under several FMPs. In 1986 a comprehensive logbook program was initiated for the Large Pelagics Longline Fishery and this reporting became mandatory in 1992. Logbook reporting has also been initiated since the early 1990s for a number of other fisheries including: Reef Fish Fisheries; Snapper-Grouper Complex Fisheries; federally managed Shark Fisheries; and King and Spanish Mackerel Fisheries. In each case, vessel captains are required to submit information on the fishing location, the amount and type of fishing gear used, the total amount of fishing effort (e.g., gear sets) during a given trip, the total weight and composition of the catch, and the disposition of the catch during each unit of effort (e.g., kept, released alive, released dead). FLS data are used to estimate the total amount of fishing effort in the fishery and thus expand bycatch rate estimates from observer data to estimates of the total incidental take of marine mammal species in a given fishery.

8. Northeast Region Dealer Reported Data

The Northeast Region Dealer Database houses trip level fishery statistics on fish species landed by market category, vessel ID, permit number, port location and date of landing, and gear type utilized. The data are collected by both federally permitted seafood dealers and NMFS port agents. Data are considered to represent a census of both vessels
actively fishing with a federal permit and total fish landings. It also includes vessels that fish with a state permit (excluding the state of North Carolina) that land a federally managed species. Some states submit the same trip level data to the Northeast Region, but contrary to the data submitted by federally permitted seafood dealers, the trip level data reported by individual states does not include unique vessel and permit information. Therefore, the estimated number of active permit holders reported within this appendix should be considered a minimum estimate. It is important to note that dealers were previously required to report weekly in a dealer call in system. However, in recent years the NER regional dealer reporting system has instituted a daily electronic reporting system. Although the initial reports generated from this new system did experience some initial reporting problems, these problems have been addressed and the new daily electronic reporting system is providing better real time information to managers.

II. U.S Atlantic Commercial Fisheries

Northeast Sink Gillnet (text includes descriptions of Northeast anchored float and Northeast drift gillnets)

Number of Permit Holders: In 2009, 1,988 federal northeast permit holders identified sink gillnet as a potential gear type.

Number of Active Permit Holders: In 2009, 178 federal northeast permit holders reported the use of sink gillnets in the Northeast Region Dealer Reported Landings Database.

Total Effort: Total metric tons of fish landed from 1998 to 2009 were 22,933, 18,681, 14,487, 14, 634, 15,201, 17,680, 19,080, 15.390, 14,950, 15,808, 18,808, and 17.207 respectively (NMFS). Data on total quantity of gear fished (i.e., number of sets) have not been reported consistently among commercial gillnet fishermen on vessel logbooks, and therefore will not be reported here.

Temporal and Spatial Distribution: Effort is distributed throughout the Gulf of Maine, Georges Bank, and Southern New England Regions. Effort occurs year-round with a peak during May, June, and July primarily on the continental shelf region in depths ranging from 30 to 750 feet. Some nets are set in water depths greater than 800 feet. Figures 1-5 document the distribution of sets and marine mammal interactions observed from 2005 to 2009, respectively.

Gear Characteristics: The Northeast Sink Gillnet Fishery is dominated by a bottom-tending (sink) net. Less than 1% of the fishery utilizes a gillnet that either is anchored floating or drift (i.e. Northeast anchored float and Northeast drift gillnet fisheries). Monofilament is the dominant material used with stretched mesh sizes ranging from 6 to 12 inches. String lengths range from 600 to 10,500 feet long. The mesh size and string length vary by the primary fish species targeted for catch.

Management and Regulations: The Northeast Sink Gillnet Fishery has been defined as a Category I fishery, and both the Northeast anchored float and Northeast drift gillnet fisheries as Category II fisheries, in the 2010 List of Fisheries (74 FR 58859, November 16, 2009, 50 CFR Part 229). This gear is addressed by several federal and state FMPs that range North and East of the 72 degree 30 min line; the Atlantic Large Whale Take Reduction Plan (ALWTRP) and Harbor Porpoise Take Reduction Plan (HPTRP). This fishery operates from the U.S./Canada border to Long Island, NY, at 72° 30' W long, south to 36° 33.03'N lat. and east to the eastern edge of the EEZ, not including Long Island Sound or other waters where gillnet fisheries are listed as Category II or III. The relevant FMPs include, but may not be limited to: the Northeast Multi-species (FR 67, CFR Part 648.80 through 648.97); Monkfish (FR 68(81), 50 CFR Part 648.91 through 648.97); Spiny Dogfish (FR 65(7), 50 CFR Part 648.230 through 648.237); Summer Flounder, Scup and Black Sea Bass (FR 68(1), 50 CFR part 648.100 through 648.147); Atlantic Bluefish (FR 68(91), 50 CFR Part 648.160 through 648.165); and Northeast Skate Complex (FR 68(160), 50 CFR part 648.320 through 648.322). These fisheries are primarily managed by total allowable catch (TACs); individual trip limits (i.e., quotas); effort caps (i.e., limited number of days at sea per vessel); time and area closures; and gear restrictions.

Observer Coverage: During the period 1990-2009, estimated percent observer coverage (number of trips
observed/total commercial trips reported) was 1, 6, 7, 5, 7, 5, 4, 6, 5, 6, 4, 2, 3, 6, 7, 4, 7, 5, and 4 respectively.

Comments: Effort patterns in this fishery are heavily influenced by fish time/area closures, and gear restrictions due to fish conservation measures, time/area closures and gear restrictions under the ALWTRP, and pinger requirements and time/area closures under the HPTRP.

Protected Species Interactions: Documented interaction with harbor porpoise, white-sided dolphin, harbor seal, gray seal, harp seal, hooded seal, long-finned pilot whale, offshore bottlenose dolphin, Risso’s dolphin, and common dolphin were reported in this fishery. Not mentioned here are possible interactions with sea turtles and sea birds.

Bay of Fundy Sink Gillnet

Target Species: Atlantic cod and other groundfish.

Number of Permit Holders: To Be Determined

Number of Active Permit Holders: To Be Determined

Total Effort: To Be Determined

Temporal and Spatial Distribution: In Canadian waters the Gillnet Fishery occurs during the summer and early autumn months mostly in the western portion of the Bay of Fundy.

Gear Characteristics: Typical gillnet strings are 300 m long (three 100 m panels), 4 m deep, with stretched mesh size of 15 cm, strand diameter of 0.57-0.60 mm, and are usually set at a depth of about 100 m for 24 hours.

Management and Regulations: To Be Determined

Observer Coverage: During the period 1994 to 2001, the estimated percent observer coverage of the Grand Manan portion of the sink gillnet fishery was 49, 89, 80, 80, 24, 11, 41, and 56. The fishery was not observed during 2002 and 2003.

Comments: Marine mammals in Canadian waters are regulated by the Committee on the Status of Endangered Wildlife in Canada (COSEWIC). DFO Maritimes Region has developed a Harbour Porpoise Conservation Strategy that has set a maximum take of 110 Harbor Porpoise per year in the Bay of Fundy. Bycatch mitigation measures include acoustic pingers and nylon barium-sulphate netting that target cetacean and sea bird bycatch reduction goals, and fishery effort restrictions that target fish management goals.

Protected Species Interactions: Documented interactions with bottlenose dolphin, common dolphin, fin whale, gray seal, harbor porpoise, harbor seal, harp seal, hooded seal, humpback whale, minke whale, North Atlantic right whale, Risso’s dolphin, white-sided dolphin and sea birds were reported in this fishery.

Mid-Atlantic Gillnet

Target Species: Monkfish, Spiny and Smooth Dogfish, Bluefish, Weakfish, Menhaden, Spot, Croaker, Striped Bass, Coastal Sharks, Spanish Mackerel, King Mackerel, American Shad, Black Drum, Skate spp., Yellow perch, White Perch, Herring, Scup, Kingfish, Spotted Seatrout, and Butterfish.

Number of Permit Holders: In 2009, 637 federal mid-Atlantic permit holders identified sink gillnet as a potential gear type.

Number of Active Permit Holders: In 2009, approximately 137 federal mid-Atlantic permit holders reported the use of sink gillnets in the Northeast Region Dealer Reported Landings Database.

Total Effort: Total metric tons of fish landed from 1998 to 2009 were 15,494, 19,130, 16,333, 14,855, 13,389, 13,107, 15,124, 12, 994, 8,755, 9,359, 8,622, and 8,703 respectively (NMFS). Data on total quantity of gear fished (i.e. number of sets) have not been reported consistently among commercial gillnet fishermen on vessel logbooks, therefore will not be reported here.

209
Temporal and Spatial Distribution: This fishery operates year-round, extending from New York to North Carolina. It is comprised of a combination of small vessels that target a variety of fish species. This fishery can be prosecuted right off the beach (6 feet) or in nearshore coastal waters to offshore waters (250 feet). Figures 6-10 document the distribution of sets and marine mammal interactions observed from 2005 to 2009 respectively.

Gear Characteristics: The Mid-Atlantic Gillnet Fishery utilizes both drift and sink gillnets, including nets set in a sink, stab, set, strike, or drift fashion. These nets are most frequently attached to the bottom, although unanchored drift or sink nets are also utilized to target specific species. Monofilament twine is the dominant material used with stretched mesh sizes ranging from 2.5 to 12 inches. String lengths range from 150 to 8,400 feet. The mesh size and string length vary by the primary fish species targeted for catch.

Management and Regulations: The Mid-Atlantic Gillnet Fishery has been defined as a Category I fishery in the 2011 List of Fisheries (75 FR 68468, November 8, 2010, 50 CFR Part 229). This gear is addressed by several federal FMPs, Inter-State Fishery Management Plans (ISFMP’s) managed by the Atlantic States Marine Fisheries Commission (ASMFC), ALWTRP, the HPTRP, and the Bottlenose Dolphin TRP (BDTRP). The eastern boundary of this fishery is a line drawn at 72° 30’ W long. from Long Island south to 36° 33.03’ N lat., then east to the EEZ, and then south to the North Carolina/South Carolina border. The area does not include waters where Category II and III inshore gillnet fisheries operate in bays, estuaries, and rivers. The relevant FMPs include, but may not be limited to: Atlantic Bluefish (FR 68(91), 50 CFR Part 648.160 through 648.165); Weakfish (FR 68(191), 50 CFR 697.7); Shad and River Herring (ASMFC ISFMP 2002); Striped Bass (FR68(202), 50 CFR part 697.7); Spanish Mackerel (FR 65(92), 50 CFR 622.1 through 622.48); Monkfish (FR 68(81), 50 CFR Part 648.91 through 648.97); Spiny Dogfish (FR 65(7), 50 CFR Part 648.230 through 648.273); Summer Flounder, Scup and Black Sea Bass (FR 68(1), 50 CFR part 648.100 through 648.147); Northeast Skate Complex (FR 68(160), 50 CFR part 648.320 through 648.322); and Atlantic Coastal Sharks (FR 68(247), 50 CFR 600-635). These fisheries are primarily managed by TACs; individual trip limits (i.e., quotas); effort caps (i.e., limited number of days at sea per vessel); time and area closures; and gear restrictions.

Observer Coverage: During the period 1995-2009, the estimated percent observer coverage was 5, 4, 3, 5, 2, 2, 2, 1, 1, 2, 3, 4, 4, 3, and 3 respectively.

Comments: Effort patterns in this fishery are heavily influenced by marine mammal time/area closures and /or gear restrictions under the ALWTRP, HPTRP, and BDTRP; and gear restrictions due to fish conservation measures.

Protected Species Interactions: Documented interaction with harbor porpoise, white-sided dolphin, harbor seal, gray seal, harp seal, estuarine bottlenose dolphin, coastal bottlenose dolphin, offshore bottlenose dolphin, common dolphin, minke whale (Canadian East Coast stock), humpback whale (Gulf of Maine stock), Risso’s dolphin, and long-finned and short-finned pilot whale were reported in this fishery. Not mentioned here are possible interactions with sea turtles and sea birds.

Mid-Atlantic Trawl

Target Species: Include, but are not limited to: Atlantic Cod, Haddock, Pollock, Yellowtail Flounder, Winter Flounder, Witch Flounder, American Plaice, Atlantic Halibut, Redfish, Windowpane Flounder, Summer Flounder, Spiny and Smooth Dogfish, Monkfish, Silver Hake, Red Hake, White Hake, Ocean Pout, Scup, Black Sea Bass, Skate spp, Atlantic Mackerel, Loligo Squid, Illex Squid, and Atlantic Butterfish.

Number of Permit Holders: In 2009, 666 federal mid-Atlantic permit holders identified bottom trawl (including beam, bottom fish, bottom shrimp, and bottom scallop trawls) as a potential gear type.

Number of Active Permit Holders: In 2009, approximately 273 federal mid-Atlantic permit holders reported the use of bottom trawls in the Northeast Region Dealer Reported Landings Database.

Mixed Groundfish Bottom Trawl Total Effort: Total effort, measured in trips, for the Mixed Groundfish Trawl from 1998 to 2009 was 27,521, 26,525, 24,362, 27,890, 28,103, 25,725, 22,303, 15,070, 12,457, 11,279, 10,785 and 10,497 respectively (NMFS). The number of days absent from port, or days at sea, is yet to be determined.
Squid, Mackerel, Butterfish Bottom Trawl Total Effort: Total effort, measured in trips, for the domestic Atlantic Mackerel Fishery in the Mid-Atlantic Region (bottom trawl only) from 1997 to 2009 were 373, 278, 262, 102, 175, 310, 238, 231, 0, 117, 88, 0, and 66 respectively (NMFS). Total effort, measured in trips, for the Illex Squid Fishery from 1998 to 2009 were 412, 141, 108, 51, 39, 103, 445, 181, 159, 103, 172 and 177 respectively (NMFS). Total effort, measured in trips, for the Loligo Squid Fishery from 1998 to 2009 were 1,048, 495, 529, 413, 3,585, 1,848, 1,124, 1,845, 3,058, 2,137, 2,578 and 2,234 respectively (NMFS). Atlantic Butterfish is a bycatch (non-directed) fishery, therefore effort on this species will not be reported. The number of days absent from port, or days at sea, is yet to be determined.

Temporal and Spatial Distribution: The Mixed Groundfish Fishery occurs year-round from Cape Cod, Massachusetts to Cape Hatteras, North Carolina. Because of spatial and temporal differences in the harvesting of Illex and Loligo Squid and Atlantic Mackerel, each one of these sub-fisheries is described separately. Figures 11-15 document the distribution of tows and marine mammal interactions observed from 2005 to 2009 respectively.

Illex Squid

The U.S. domestic fishery for Illex Squid, ranging from Southern New England to Cape Hatteras, North Carolina, reflects patterns in the seasonal distribution of Illex Squid (Illex illecebrosus). Illex is harvested offshore (along or outside of the 100-m isobath), mainly by small-mesh otter trawlers, when the Squid are distributed in continental shelf and slope waters during the summer months (June-September) (Clark 1998).

Loligo Squid

The U.S. domestic fishery for Loligo Squid (Loligo pealeii) occurs mainly in Southern New England and mid-Atlantic waters. Fishery patterns reflect Loligo seasonal distribution, therefore most effort is directed offshore near the edge of the continental shelf during the fall and winter months (October-March) and inshore during the spring and summer months (April-September) (Clark 1998).

Atlantic Mackerel

The U.S. domestic fishery for Atlantic Mackerel (Scomber scombrus) occurs primarily in the Southern New England and mid-Atlantic waters between the months of January and May (Clark 1998). An Atlantic Mackerel Trawl Fishery also occurs in the Gulf of Maine during the summer and fall months (May-December) (Clark 1998).

Atlantic Butterfish

Atlantic Butterfish (Pepilus triacanthus) undergo a northerly inshore migration during the summer months, a southerly offshore migration during the winter months, and are mainly caught as bycatch to the directed Squid and Mackerel Fisheries. Fishery Observers suggest that a significant amount of Atlantic Butterfish discarding occurs at sea.

Gear Characteristics: The Mixed Groundfish Bottom Trawl Fishery gear characteristics have not yet been determined or summarized. The Illex and Loligo Squid Fisheries are dominated by small-mesh otter trawls, but substantial landings of Loligo Squid are also taken by inshore pound nets and fish traps during the spring and summer months (Clark 1998). The Atlantic Mackerel Fishery is prosecuted by both mid-water (pelagic) and bottom trawls.

Management and Regulations: The Mid-Atlantic Bottom Trawl Fishery has been defined as a Category II fishery in the 2010 List of Fisheries (74 FR 58859, November 16, 2009). There are at least two distinct components to this fishery. One is the mixed groundfish bottom trawl fishery. It is managed by several federal and state FMPs that range from Massachusetts to North Carolina. The relevant FMPs include, but may not be limited to, Monkfish (FR 68(81), 50 CFR Part 648.648.91 through 648.97); Spiny Dogfish (FR 65(7), 50 CFR Part 648.230 through 648.237); Summer Flounder, Scup, and Black Sea Bass (FR 68(1), 50 CFR part 648.100 through 648.147); and Northeast Skate Complex (FR 68(160), 50 CFR part 648.320 through 648.322). The second major component is the squid, mackerel, butterfish fishery. This component is managed by the federal Squid, Mackerel, Butterfish FMP (50 CFR Part 648.20 through 648.24). The Illex and Loligo Squid Fisheries are managed by moratorium permits, gear and area restrictions, quotas, and trip limits. The Atlantic Mackerel and Atlantic Butterfish Fisheries are managed by an annual quota system. Mid-Atlantic Bottom Trawl Fisheries are all included in the Atlantic Trawl Gear Take Reduction Strategy.

Observer Coverage: During the period 1996-2009, estimated percent observer coverage (measured in trips) for the Mixed Groundfish Bottom Trawl Fishery was 0.24, 0.22, 0.15, 0.14, 1, 1, 1, 1, 3, 3, 2, 3, and 5 respectively.

During the period 1996-2009, estimated percent observer coverage (trips) in the Illex Fishery was 3.7, 6.21, 0.97,
2.84, 11.11, 0, 0, 8.74, 5.07, 6, 15, 14, 5 and 10 respectively. During the period 1996-2009, estimated percent observer coverage (trips) of the *Loligo* Fishery was 0.37, 1.07, 0.72, 0.69, 0.61, 0.95, 0.42, 0.65, 5.07, 4, 3, 2, 2 and 7 respectively. During the period 1997-2009, estimated percent observer coverage (trips) of the domestic Atlantic Mackerel Fishery was 0.81, 0, 1.14, 4.90, 3.43, 0.97, 5.04, 18.61, 0, 3, 2, 0 and 8 respectively. Mandatory 100% observer coverage is required on any Joint Venture (JV) fishing operation. The most recent Atlantic Mackerel JV fishing activity occurred in 1998 and 2002 where 152 and 62 transfers from USA vessels were observed respectively. Only the net transfer operations from the USA vessel to the foreign processing vessel are observed. The actual net towing and hauling operations conducted on the USA vessel are not observed.

Comments: Mobile Gear Restricted Areas (GRAs) were put in place for fishery management purposes in November 2000. The intent of the GRAs is to reduce bycatch of scup. The GRAs are spread out in time and space along the edge of the Southern New England and Mid-Atlantic Continental Shelf Region (between 100 and 1000 meters). These seasonal closures are targeted at trawl gear with small-mesh sizes (<4.5 inches inside mesh measurement). The Atlantic Herring and Atlantic Mackerel Trawl Fisheries are exempt from the GRAs. Access to the GRAs to harvest non-exempt species (*Loligo* Squid, Black Sea Bass, and Silver Hake) can be granted by a special permit. For detailed information regarding GRAs refer to (FR 70(2), (50 CFR Part 648.122 parts A and B)).

Protected Species Interactions: Documented interaction with common dolphin, long-finned pilot whale, short-finned pilot whale, Risso’s dolphin, offshore dolphin, and white-sided dolphin were reported in this fishery. Not mentioned here are possible interactions with sea turtles and sea birds.

Northeast Bottom Trawl

Target Species: Atlantic Cod, Haddock, Pollock, Yellowtail Flounder, Winter Flounder, Witch Flounder, American Plaice, Atlantic Halibut, Redfish, Windowpane Flounder, Summer Flounder, Spiny Dogfish, Monkfish, Silver Hake, Red Hake, White Hake, Ocean Pout, *Loligo* squid and Skate spp.

Number of Permit Holders: In 2009, 2,057 federal northeast permit holders identified bottom trawl (including beam, bottom fish, bottom shrimp, and bottom scallop trawls) as a potential gear type.

Number of Active Permit Holders: In 2009, 164 federal northeast permit holders reported the use of bottom trawls in the Northeast Region Dealer Reported Landings Database.

Total Effort: Total effort, measured in trips, for the Northeast Bottom Trawl Fishery from 1998 to 2009 was 13,263, 10,795, 12,625, 12,384, 12,711, 11,577, 10,354, 10,803, 8,603, 8,950 and 8,900 respectively (NMFS).

Temporal and Spatial Distribution: Effort occurs year-round with a peak during May, June, and July primarily on the continental shelf and is distributed throughout the Gulf of Maine, Georges Bank and Southern New England Regions. Figures 16-20 document the distribution of tows and marine mammal interactions observed from 2005 to 2009 respectively.

Gear Characteristics: The average footrope length for the bottom trawl fleet was about 84 feet from 1996 – 1999; in 2000 there was a sharp increase to almost 88 feet followed by a steady decline to 85 feet in 2004. Seasonality was evident, with larger footrope lengths in the first quarter, which drop sharply from March to the low in May, and followed by a steady increase in size until December. There are some differences in mean gear size between species. Compared to other species, gear size was smaller for trips that caught winter flounder, cod, yellowtail flounder, fluke, skate, dogfish, and Atlantic herring. Trips that caught haddock, *Illex* squid, and monkfish tended to have larger gear. For most species, seasonal variation was limited. Seasonality was evident for witch flounder, American plaice, scup, butterfish, both squid species, and monkfish. Further characterization of the Northeast and Mid-Atlantic bottom and mid-water trawl fisheries based on Vessel Trip Report (VTR) data can be found at http://www.nefsc.noaa.gov/nefsc/publications/crd/crd0715/.

Management and Regulations: The Northeast Bottom Trawl Fishery has been defined as a Category II fishery in the 2010 List of Fisheries (74 FR 58859, November 16, 2009). This gear is managed by several federal and state FMPs that range from Maine to Connecticut and included in the Atlantic Trawl Gear Take Reduction Strategy. The relevant FMPs include, but may not be limited to: the Northeast Multi-species (FR 67, CFR Part 648); Monkfish (FR 68(81), 50 CFR Part 648.91 through 648.97); Spiny Dogfish (FR 65(7), 50 CFR Part 648.230 through 648.237);
Summer Flounder, Scup and Black Sea Bass (FR 68(1), 50 CFR part 648.100 through 648.147); Atlantic Bluefish (FR 68(91), 50 CFR Part 648.160 through 648.165); and Northeast Skate Complex (FR 68(160), 50 CFR part 648.320 through 648.322). These fisheries are primarily addressed by TACs; individual trip limits (i.e., quotas); effort caps (i.e., limited number of days at sea per vessel); time and area closures; and gear restrictions.

Observer Coverage: During the period 1994-2009, estimated percent observer coverage (measured in trips) was 0.4, 1.1, 0.2, 0.2, 0.1, 0.3, 1.0, 1.0, 3, 4, 5, 12, 6, 6, 8 and 9 respectively.

Vessels in the Northeast Bottom Trawl Fishery, a Category II fishery under the MMPA, were observed in order to meet fishery management needs rather than monitoring for bycatch of marine mammals.

Comments: Mobile Gear Restricted Areas (GRAs) were put in place for fishery management purposes in November 2000. The intent of the GRAs is to reduce bycatch of Scup. The GRAs are spread out in time and space along the edge of the Southern New England and mid-Atlantic continental shelf region (between 100 and 1000 meters). These seasonal closures are targeted at trawl gear with small-mesh sizes (<4.5 inches inside mesh measurement). The Atlantic Herring and Atlantic Mackerel Trawl Fisheries are exempt from the GRAs. For detailed information regarding GRAs refer to (50 CFR Part 648.122 parts A and B).

Protected Species Interactions: Documented interaction with offshore bottlenose dolphin, common dolphin, harbor porpoise, harbor seal, harp seal, long-finned pilot whale, short-finned pilot whale and white-sided dolphin were reported in this fishery. Not mentioned here are possible interactions with sea turtles and sea birds.

Northeast Mid-Water Trawl Fishery (includes pair trawls)

Target Species: Atlantic Herring and miscellaneous pelagic species.

Number of Permit Holders: In 2009, 1,222 federal Northeast permit holders identified mid-water trawl as a potential gear type.

Number of Active Permit Holders: In 2009, 21 federal northeast permit holders reported the use of mid-water trawls in the Northeast Region Dealer Reported Landings Database.

Gear Characteristics: Historically, the Atlantic Herring resource was harvested by the Distant Water Fleet (DWF) until the fishery collapsed in the late 1970s. There has been no DWF since then. A domestic fleet has been harvesting the Atlantic Herring resource utilizing both fixed and mobile gears. Only a small percentage of the resource is currently harvested by fixed gear due to a combination of reduced availability and less use of fixed gear (Clark 1998). The majority of the resource is currently harvested by domestic mid-water (pelagic) trawls (single and paired).

Management and Regulations: The Northeast Mid-Water Trawl Fishery has been defined as a Category II fishery in the 2010 List of Fisheries (74 FR 58859, November 16, 2009). Atlantic herring are managed jointly by the MAFMC and ASMFC as one migratory stock complex, and by the Atlantic Trawl Gear Take Reduction Team. There has been a domestic resurgence in a directed fishery on the adult stock due to the recovery of the adult stock biomass. Northeast Mid-Water Trawl Fishery is included in the Atlantic Trawl Gear Take Reduction Strategy.

Temporal and Spatial Distribution: The current fishery occurs during the summer months when the resource is distributed throughout the Gulf of Maine and Georges Bank regions. The stock continues on a southerly migration into mid-Atlantic waters during the winter months. Figures 21-25 document the distribution of tows and marine mammal interactions observed from 2005 to 2009 respectively.

Total Effort: Total effort, measured in trips, for the Northeast Mid-Water Trawl Fishery (across all gear types) from 1997 to 2009 was 578, 289, 553, 1,312, 2,404, 1,736, 2,158, 1,564, 717, 590, 286, 236 and 236 respectively (NMFS).

Observer Coverage: During the period 1997-2009, estimated percent observer coverage (trips) was 0, 0, 0.73, 0.46, 0.06, 0, 2.25, 11.48, 19.9, 3.1, 8.04, 19.92 and 42 respectively. A U.S. JV Mid-Water (pelagic) Trawl Fishery was conducted on Georges Bank from August to December 2001. A total allowable landings of foreign fishery (TALFF)
was also granted during the same time period. Ten vessels (3 foreign and 7 American), fishing both single and
paired mid-water trawls, participated in the 2001 Atlantic Herring JV Fishery. Two out of the three foreign vessels
also participated in the 2001 TALFF and fished with paired mid-water trawls. The NMFS maintained 74% observer
coverage (243 hauls) on the JV transfers and 100% observer coverage (114 hauls) on the foreign vessels granted a
TALFF.

Comments: Mobile Gear Restricted Areas (GRAs) were put in place for fishery management purposes in November
2000. The intent of the GRAs is to reduce bycatch of Scup. The GRAs are spread out in time and space along the
edge of the Southern New England and mid-Atlantic continental shelf region (between 100 and 1000 meters). These
seasonal closures are targeted at trawl gear with small-mesh sizes (<4.5 inches inside mesh measurement). The
Atlantic Herring and Atlantic Mackerel Trawl Fisheries are exempt from the GRAs. For detailed information
regarding GRAs refer to (50 CFR Part 648.122 parts A and B)

Protected Species Interactions: Documented interaction with harbor seal, long-finned pilot whale, short-finned pilot
whale, offshore bottlenose dolphin, and white-sided dolphin were reported in this fishery. Not mentioned here are
possible interactions with sea turtles and sea birds.

Mid-Atlantic Mid-Water Trawl Fishery (includes pair trawls)
Target Species: Atlantic Mackerel, Chub Mackerel and other miscellaneous pelagic species.

Number of Permit Holders: In 2008, 358 federal mid-Atlantic permit holders identified mid-water trawl as a
potential gear type.

Number of Active Permit Holders: In 2009, 22 federal mid-Atlantic permit holders reported the use of mid-water
trawls in the Northeast Region Dealer Reported Landings Database.

Management and Regulations: The Mid-Atlantic Mid-Water Trawl Fishery has been defined as a Category II fishery
in the 2011 List of Fisheries (75 FR 68468, November 8, 2010). This fishery is included in the Atlantic Trawl Gear
Take Reduction Strategy.

Temporal and Spatial Distribution: To be determined. Figures 26-30 document the distribution of tows and marine
mammal interactions observed from 2005 to 2009 respectively.

Total Effort: Total effort, measured in trips, for the Mid-Atlantic Mid-Water Trawl Fishery (across both gear types)
from 1997 to 2009 was 331, 223, 374, 166, 408, 261, 428, 360, 359, 405, 312, 255 and 280 respectively (NMFS).

Observer Coverage: During the period 1997-2009, estimated percent observer coverage (trips) was 0, 0, 1.01, 8.43,
0, 0.77, 3.50, 12.16, 8.40, 8.90, 3.85, 13.33 and 13.2 respectively.

Comments: Mobile Gear Restricted Areas (GRAs) were put in place for fishery management purposes in November
2000. The intent of the GRAs is to reduce bycatch of Scup. The GRAs are spread out in time and space along the
edge of the Southern New England and mid-Atlantic continental shelf region (between 100 and 1000 meters). These
seasonal closures are targeted at trawl gear with small-mesh sizes (<4.5 inches inside mesh measurement). The
Atlantic Herring and Atlantic Mackerel Trawl Fisheries are exempt from the GRAs. For detailed information
regarding GRAs refer to (50 CFR Part 648.122 parts A and B).

Protected Species Interactions: Documented interaction with bottlenose dolphin, common dolphin, long-finned
pilot whale, Risso’s dolphin, short-finned pilot whale and white-sided dolphin were reported in this fishery. Not
mentioned here are possible interactions with sea turtles and sea birds.

Bay of Fundy Herring Weir

Target Species: Atlantic Herring

Number of Permit Holders: According to Canadian DFO officials, for 1998 there were 225 licenses for herring weirs
on the New Brunswick and Nova Scotia sides of the Bay of Fundy (60 from Grand Manan Island, 95 from Deer and
Campobello Islands, 30 from Passamaquoddy Bay, 35 from the East Charlotte area, and 5 from the Saint John area).
The number of licenses has been fairly consistent since 1985 (Ed Trippel, pers. comm.)

Number of Active Permit Holders: In 2002 around Grand Manan Island, the only area surveyed for active weirs, there were 22 active weirs. In 2003 the number of active weirs included: 20 around Grand Manan Island, 9 around the Wolves Islands, 10 around Campobello Island, 2 at Deer Island, and 43 in Passamaquoddy Bay and the western Bay of Fundy. The numbers in the eastern Bay of Fundy are unknown, but some do exist.

Total Effort: Effort is difficult to measure. Weirs may or may not have twine (i.e., be actively fishing) on them in a given year and the amount of time the twine is up varies from year to year. Most weirs tend to fish (i.e., have twine on them) during July, August, and September. Some fishermen keep their twine on longer, into October and November, if it is a good year or there haven’t been any storms providing incentive to take the twine down. Effort cannot simply be measured by multiplying the number of weirs with twine times the average number of fishing days (this will provide a very generous estimation of effort) because if a weir fills up with fish the fisherman will pull up the drop (close the net at the mouth) which prevents loss of fish, but also means no new fish can get in, therefore the weir is not actively fishing during that period.

Temporal and Spatial Distribution: In Canadian waters, the Herring Weir Fishery occurs from May to October along the southwestern shore of the Bay of Fundy, and is scattered along the coasts of western Nova Scotia.

Gear Characteristics: Weirs are large, heart-shaped structures (roughly 100 feet across) consisting of long wooden stakes (50-80 feet) pounded 3-6 feet into the sea floor and surrounded by a mesh net (the “twine”) of about ½ inch stretch mesh. Weirs are typically located within 100-400 feet of shore. The twine runs from the sea floor to the surface, and the only opening (the “mouth”) is positioned close to shore. Herring swimming along the shore at night, encounter a fence (net of the same twine from sea floor to surface) that runs from the weir to the shoreline and directs the fish into the weir. At dawn, the weir fisherman tends the weir and if Herring are present, he/she may close off the weir until the fish can be harvested. Harvesting takes place when the tidal current is the slackest, usually just before low tide. A large net (“seine”) is deployed inside the weir, and, much like a purse seine, it is drawn up to the surface so that the fish become concentrated. They are then pumped out with a vacuum hose into the waiting carrier for transport to the processing plant.

Management and Regulations: To Be Determined

Observer Coverage: From mid-July to early September, on a daily basis, scientists from the Grand Manan Whale & Seabird Research Station check only the weirs around Grand Manan Island for the presence of cetaceans.

Comments: Marine mammals occasionally swim into weirs, in which they can breathe and move about. Marine mammals are vulnerable during the harvesting/seining process where they can become tangled in the seine and suffocate if care is not taken to remove them from the net or to remove them from the weir prior to the onset of the seining process. Small marine mammals, like porpoises, can be removed from the net, lifted into small boats, and taken out of the weir for release without interrupting the seining process. Larger marine mammals, such as whales, must be removed from the weir either through the creation of a large enough escape hole in the back of the weir (taking down the twine and removing some poles) or sometimes by sweeping them out with a specialized mammal net, although this approach carries with it a few more risks to the animal than the “escape hole” technique.

Through the cooperation of weir fishermen and the Grand Manan Whale & Seabird Research Station, weir-associated mortality of cetaceans is relatively low. Over 91% of all entrapped porpoises, dolphins and whales are successfully released from weirs around Grand Manan Island. Thus the total number of entrapments (which can vary annually from 6 to 312) is in no way reflective or indicative of cetacean mortality caused by this fishery.

Protected Species Interactions: Documented interactions with harbor porpoise and minke whales were reported in this fishery. Right whales are also vulnerable to entrapment, though very rarely. The last two minke whales in a Grand Manan weir were safely released, unharmed, through the partial disassembly of the weir.

Gulf of Maine Atlantic Herring Purse Seine Fishery

Target Species: Atlantic Herring.
Number of Permit Holders: In 2009, 305 northeast federal permit holders identified herring purse seine as a potential gear type.

Number of Active Permit Holders: The Atlantic Herring FMP distinguishes between vessels catching herring incidentally while pursuing other species and those targeting herring by defining vessels that average less than 1 metric tons of herring caught per trip (in all areas) as incidental herring vessels. In 2009 there were 5 active federal permits reported in the Northeast Region Dealer Reported Landings Database.

Gear Characteristics: The purse seine is a deep nylon mesh net with floats on the top and lead weights on the bottom. Rings are fastened at intervals to the lead line and a purse line runs completely around the net through the rings (www.gma.org, Gulf of Maine Research Institute, GOMRI). One end of the net remains in the vessel and the other end is attached to a power skiff or “bug boat” that is deployed from the stern of the vessel and remains in place while the vessel encircles a school of fish with the net. Then the net is pursed and brought back aboard the vessel through a hydraulic power block. Purse seines vary in size according to the size of the vessel and the depth to be fished. Most purse seines used in the New England Herring Fishery range from 30 to 50 meters deep (100-165 ft) (NMFS 2005). Purse seining is a year round pursuit in the Gulf of Maine, but is most active in the summer when herring are more abundant in coastal waters and are mostly utilized at night, when herring are feeding near the surface. This fishing technique is less successful when fish remain in deeper water and when they do not form “tight” schools.

Management and Regulations: The Gulf Of Maine Atlantic Herring Purse Seine Fishery has been defined as a Category III fishery in the 2010 List of Fisheries (74 FR 58859, November 16, 2009). This fishery is managed by federal and state FMPs that range from Maine to North Carolina. The relevant FMPs include, but may not be limited to the Atlantic Herring FMP (FR 70(19), 50 CFR Part 648.200 through 648.207) and the Northeast Multi-species (FR 67, CFR Part 648.80 through 648.97). This fishery is primarily managed by total allowable catch (TACs).

Temporal and Spatial Distribution: Most U.S. Atlantic herring catches occur between May and October in the Gulf of Maine, consistent with the peak season for the lobster fishery. The connection between the herring and lobster fisheries is the reliance of the lobster industry on herring for bait. In addition, there is a relatively substantial winter fishery in southern New England, and catches from Georges Bank have increased somewhat in recent years. There is a very small recreational fishery for Atlantic herring that generally occurs from early spring to late fall, and herring is caught by tuna boats with gillnets for use as live bait in the recreational tuna fisheries. In addition, there is a Canadian fishery for Atlantic herring from New Brunswick to the Gulf of St. Lawrence, which primarily utilizes fixed gear. Fish caught in the New Brunswick (NB) weir fishery are assumed to come from the same stock (inshore component) as that targeted by U.S. fishermen (http://www.nefmc.org/herring/index.html, Northeast Fisheries Management Council, NEFMC). Figures 31-35 document the distribution of sets and marine mammal interactions observed from 2004 to 2008, respectively.

Total Effort: Total metric tons of fish landed from 1998 to 2009 were 24,256, 39,866, 29,609, 20,691, 20,096, 17,939, 19,958, 16,306, d 18,700, 31,019, 27,327, and 22,547 respectively (NMFS, Unpbl.). Total effort, measured in trips, for the Gulf of Maine Atlantic Herring Purse Seine Fishery from 2002 to 2009 was 343, 339, 276, 202, 175, 249, 344, and 228 respectively (NMFS, Unpbl.).

Observer Coverage: During the period 1994 to 2002, estimated observer coverage (number of trips observed/total commercial trips reported) was 0. From 2003 to 2008, percent observer coverage was 0.34, 9.8, 0.27, 0, 3.2 and 11.2 respectively. The coverage in 2004 may be considered a ‘pilot’ program, as sampling priorities and data collection methods were refined over the course of the year.

Protected Species Interactions: Documented interactions with humpback whale, fin/sei whale, minke whale, harbor porpoise, harbor seal, gray seal and white-sided dolphin were reported in this fishery.

Northeast/Mid-Atlantic American Lobster Trap/Pot

In the United States (US), the American lobster, *Homarus americanus*, is distributed from Maine to North Carolina and is most abundant in relatively shallow coastal zones. Inshore landings have increased since the 1970s. Fishing effort is intense and increasing throughout the range of the resource. Approximately 80% of lobster landings are
derived from state waters which occur from 0-3 miles from shore. There are three distinctly identified stock areas for the American lobster: 1) Gulf of Maine, 2) Southern New England, and 3) Georges Bank. A cooperative state and Federal management plan is in place to manage the lobster resource and the plan is administered under the authority of the Atlantic Coastal Act, with oversight provided by the Atlantic States Marine Fisheries Commission (ASMFC). The ASMFC’s role is to develop coastal fishery management programs, oversee state implementation of the coastal measures in state waters, and provide recommendations for the Federal government to implement complementary regulations in Federal waters. States implement management measures from 0-3 miles within their respective jurisdictions in compliance with the measures adopted in the management plan. The National Marine Fisheries Service is obliged to enact measures that support the plan in Federal waters, from 3-200 miles from shore, codified under 50 CFR 697.

American lobster is the most valuable fishery in the eastern US, with total landings of 100 million lbs. valued at $308.7 million in 2009. Combined landings from Maine and Massachusetts vessels comprised 92% of the landings for 2009, with Maine landing nearly 81 million lbs. in 2009. In 2009, approximately 3,183 vessels held permits to fish for and harvest lobsters in Federal waters, which does not include the several thousand vessels coastwide authorized to harvest lobster in state water. The majority of vessels harvest lobster with traps, with about 2-3% of the harvest taken by mobile gear (trawlers and dredges). The offshore fishery in Federal waters has developed in the past 15 years, largely due to technological improvements in equipment and lower competition in the offshore areas.

In January 1997, NMFS changed the classification of the Gulf of Maine and Mid-Atlantic Lobster Pot Fisheries from Category III to Category I (1997 List of Fisheries 62 FR 33, January 2, 1997) based on examination of 1990 to 1994 stranding and entanglement records of large whales (including Right, Humpback and Minke whales). Both the EEZ and state fishery are operating under Federal regulations from the ALWTRP (50 CFR 229.32). Documented interaction with minke whales were reported in this fishery.

Atlantic Ocean, Caribbean, Gulf of Mexico Large Pelagics Longline

Target Species: Large pelagic fish species including: Swordfish, Yellowfin Tuna, Bigeye Tuna, Bluefin Tuna, Albacore Tuna, Dolphin Fish, Shortfin Mako Shark, and a variety of other shark species.

Number of Permit Holders: < 100

Number of Active Permit Holders: The number of fishing vessels in the Pelagic Longline Fishery has been declining since a peak number of 361 vessels reporting longline effort during 1995. Over the period between 1995 and 2000, the mean number of vessels reporting effort for the entire Atlantic Ocean not including the Gulf of Mexico was 163. This declined to an annual average of 72 for the period between 2001 and 2007. Seventy-seven vessels reported pelagic longline effort in the Atlantic during 2008. It is likely that some of these vessels also reported effort in the Gulf of Mexico.

Total Effort: The total fishing effort in the Atlantic component of the Pelagic Longline Fishery has been declining since a peak reported effort of 12,318 sets (7.41 million hooks) during 1995. The mean effort reported to the Fisheries Logbook System between 1995 and 2000 was 9,370 sets (5.62 million hooks). Between 2001 and 2007, a mean of 4,551 sets (3.19 million hooks) was reported each year. During 2008, the total reported fishing effort in the Atlantic Ocean component of the fishery was 5,684 sets and 4.16 million hooks (Garrison et al. 2009).

Temporal and Spatial Distribution: Fishing effort occurs year round and operates in waters both inside and outside the U.S. EEZ throughout Atlantic, Caribbean and Gulf of Mexico waters. The “Atlantic” component of the fleet operates both in coastal and continental shelf waters along the U.S. Atlantic coast from Florida to Massachusetts. The fleet also operates in distant waters of the Atlantic including the central equatorial Atlantic Ocean and the Canadian Grand Banks. Fishing effort is reported in 11 defined fishing areas including the Gulf of Mexico. During 2008, the majority of fishing effort in the Atlantic was reported in the Mid-Atlantic Bight (Virginia to New Jersey, 1,911 sets) and the South Atlantic Bight (Georgia to North Carolina, 1,126 sets) fishing areas (Garrison et al. 2009).

Gear Characteristics: The pelagic longline gear consists of a mainline of >700-lb test monofilament typically ranging between 10 and 45 miles long. At regular intervals along the mainline, bullet-shaped floats are suspended and long sections of the gear are marked by “high-flyers” or radio beacons. Suspended from the mainline are long gangerion lines of 200 to 400-lb test monofilament that are typically 100 to 200 feet in length. Fishing depths are most
typically between 40 and 120 feet. Hooks of various sizes are attached by a steel swivel leader. Longline sets targeting tunas are typically set at dawn and soak throughout the day with recovery near dusk. Those sets targeting swordfish are more typically night sets. The total amount of time the gear remains in the water including set, soak, and haul times is typically 10-14 hours. As a result of a recent Biological Opinion on interactions between Atlantic longline gear targeting Tunas and Swordfish and endangered sea turtles, a comprehensive change in the fishing gear occurred in the longline fishery. After August 2004, only circle shaped hooks of 16/0 or 18/0 size can be used throughout the fishery.

Management and Regulations: The Large Pelagics Longline Fishery is listed as a Category I fishery under the MMPA due to frequently observed interactions with marine mammals (73 CFR 73066, December 1, 2008). The directed fishery is managed under the FMP for Atlantic Tunas, Swordfish, and Sharks (HMS FMP, 50 CFR Part 635) and the Pelagic Longline Take Reduction Plan. The fishery has also been the focus of management actions relating to bycatch of billfish. Amendment One to the Atlantic Billfish FMP also pertains to the Large Pelagics Longline Fishery and is consistent with the regulations in the HMS FMP. This fishery is also regulated under the Endangered Species Act resulting from frequent interactions with sea turtle species including both Loggerhead and Leatherback Turtles in the Atlantic and Gulf of Mexico. A Biological Opinion issued by the NMFS Southeast Regional Office in June 2004 mandated the use of circle hooks throughout the fishery, mandated the use of de-hooking and disentanglement gear by fishermen to reduce the mortality of captured sea turtles, reopened the Northeast Distant Water fishing area, and mandated increased reporting and monitoring of the fishery.

Observer Coverage: The Pelagic Longline Observer Program (POP) is a mandatory observer program managed by the SEFSC that has been in place since 1992. Observers are placed upon randomly selected vessels with total observer effort allocated on a geographic basis proportional to the total amount of fishing effort reported by the fleet. The target observer coverage level was 6% of reported sets through 2001, and was elevated to 8% of total sets in 2002. Between 2000 and 2007, observer coverage as a percentage of reported sets in the Atlantic component of the fishery was 4, 4, 4, 7, 9, 6, 7, and 7. The observer coverage during 2007 was 7% of reported sets; however, coverage was often >10% in some areas and seasons (Garrison et al. 2009). These values do not include the experimental portion of the fishery in the Northeast Distant Water (NED) area, which was 100% of sets during 2001-2003. Observed longline sets and marine mammal interactions are shown for 2005-2009 in Tables 36 through 40.

Comments: This fishery has been the subject of numerous management actions since 2000 associated with bycatch of both billfish and sea turtles. These changes have resulted in a reduction of overall fishery effort and changes in the behaviors of the fishery. The most significant change was the closure of the NED area off the Canadian Grand Banks and near the Azores as of June 1, 2001 (50 CFR Part 635). An experimental fishery was conducted in this area during both 2001 and 2002 to evaluate gear characteristics and fishing practices that increase the bycatch rate of sea turtles. Several marine mammals, primarily Risso’s Dolphins, were seriously injured during this experimental fishery. In addition, there have been a number of time-area closures since late 2000 including year-round closures in the DeSoto Canyon area in the Gulf of Mexico and the Florida East Coast area; and additional seasonal closures in the Charleston Bump area and off of New Jersey (NMFS 2003). Additionally, a ban on the use of live fish bait was initiated in 1999 due to concerns over billfish bycatch. The June 2004 Biological Opinion has resulted in a significant change in the gear and fishing practices of this fishery that will impact marine mammal bycatch. The majority of interactions with marine mammals in this fishery have been with Pilot Whales and Risso’s Dolphin. These interactions primarily occurred along the shelf break in the Mid-Atlantic Bight region during the third and fourth quarters (Garrison 2003; 2005; Walsh and Garrison 2006; Walsh and Garrison 2007, Garrison et al. 2009). The Pelagic Longline Take Reduction Team was convened during 2005 to develop approaches to reduce the serious injury of pilot whales in the mid-Atlantic, and the resulting take reduction plan is currently being implemented by NOAA Fisheries.

Protected Species Interactions: Documented interactions with Risso’s dolphin, long-finned pilot whale, short-finned pilot whale, common dolphin, Atlantic spotted dolphin, pantropical spotted dolphin, bottlenose dolphin, dwarf or pygmy sperm whale, Cuvier’s beaked whale, Mesoplodon beaked whale, and northern bottlenose whale were reported in this fishery. Not mentioned here are documented interactions with sea turtles and sea birds.

Southeastern U.S. Atlantic Shark Gillnet
Target Species: Large and small coastal sharks including: Blacktip, Blacknose, Finetooth, Bonnethead, and Sharpnose Sharks

218
Number of Permit Holders: ~30

Number of Active Permit Holders: ~30

Total Effort: Gillnets targeting sharks in the southeastern U.S. Atlantic are fished in a variety of configurations including long soak drift sets, short soak encircling strike sets, and short duration sink sets. In addition, sink gillnets are used to target other finfish species. The same fishing vessels will fish the different types of sets. It is difficult to identify these different gear types and distinguish sets targeting sharks from those targeting finfish in the reported logbook data. The total amount of effort was therefore estimated based upon observer data and reported fishing gear and catch characteristics (Garrison 2007). Between 2001 and 2005, an annual average of 74 drift sets, 40 strike sets, and 241 sink sets targeting sharks were reported and/or observed. The number of drift sets has been declining steadily while the number of strike sets has been increasing. During 2006, there were 8 drift sets, 40 strike sets, and 301 sink sets targeting sharks reported or observed (Garrison 2007). However, there is direct evidence of under-reporting as some observed sets were not reported to the FLS system, and the total effort remains highly uncertain. In 2007, a total of 85 drift net sets were observed with 4 of those targeting sharks and the remainder Spanish mackerel. A total of 112 sink net sets were expanded under the ALWTRP to include the area between 32° N latitude west of 80° W longitude and within 35 nautical miles of the South Carolina coast (Southeast U.S. Restricted Area North) with a closure to all gillnet gear from November 15 to April 15. The area between 29° N latitude and 27° 51’ N latitude west of 80° W longitude (Southeast U.S. Restricted Area South) is also closed to gillnetting from December 1 through March 31, but fishing for shark is permitted with limited exemptions if special provisions are met (72 FR 34632, June 25, 2007).

Temporal and Spatial Distribution: The Shark Gillnet fleet operates primarily in the coastal waters of Florida and Georgia, but sink sets targeting sharks are reported as far north as Cape Hatteras, NC (Carlson and Bethea 2007; Garrison 2007). Prior to 2007, shark drift gillnet fishing was restricted under the ALWTRP off the coast of Georgia (from 32° N latitude) and Florida to 27° 51’ N latitude between 15 November to 31 March. Outside of this season, the drift and strike fishing vessels operated primarily north of Cape Canaveral, Florida, and along the Georgia coast. In 2007, the restricted area was expanded under the ALWTRP to include the area between 32° N latitude west of 80° W longitude and within 35 nautical miles of the South Carolina coast (Southeast U.S. Restricted Area North) with a closure to all gillnet gear from November 15 to April 15. The area between 29° N latitude and 27° 51’ N latitude west of 80° W longitude (Southeast U.S. Restricted Area South) is also closed to gillnetting from December 1 through March 31, but fishing for shark is permitted with limited exemptions if special provisions are met (72 FR 34632, June 25, 2007).

Gear Characteristics: Historically, shark drift gillnet fishing was characterized by large-mesh (5-10 inches) nets that are typically greater than 1500 feet long and have long, night-time soak durations exceeding 10 hours. However, in recent years, an increasing proportion of the fishing effort consists of “strike sets” in which schools of sharks are targeted and encircled. Strike sets are of much shorter duration (typically < 1 hour) than drift sets, have large mesh sizes, and use deep fishing nets (Carlson and Bethea 2007). Sink nets typically use smaller mesh sizes than strike nets, the nets are shallower and shorter, and the soak duration average approximately 2 hours (Garrison 2007). Likewise, large mesh, long soak-time drift net fishing has largely ended. Drift gillnets targeting sharks (observed off the coast of North Carolina) are of much shorter duration with total fishing times averaging less than 3 hours (Passerotti and Carlson 2009).

Management and Regulations: The Southeastern U.S. Atlantic Shark Gillnet Fishery is listed as a Category II fishery under the MMPA due to occasional interactions with marine mammals (74 FR 58859, November 16, 2009). The directed fishery effort is managed under an amendment to the HMS FMP (50 CFR Part 635, 66 FR 17370 March 30, 2001) that mandates observer coverage outside of the season, defined by the ALWTRP, at levels sufficient to achieve precise estimates (coefficient of variation < 0.3) of marine mammal and sea turtle bycatch. The fishery is also managed under the ALWTRP (50 CFR Part 229.32) and the Bottlenose Dolphin Take Reduction Plan. The ALWTRP includes seasonal restriction of gillnet fishing in the Southeast U.S. Restricted Area North, special provisions for shark gillnet gear in the Southeast U.S. Restricted Area South, including 100% observer coverage, and the use of Vessel Monitoring Systems (VMS) in lieu of 100% observer coverage for shark gillnets with webbing of 5” or greater stretched mesh in the newly created Delaware U.S. Monitoring Area (72 FR 57104, October 5, 2007) and restrictions on setting shark gillnets with webbing of 5” or greater stretched mesh 3 nm from large whales in the newly created Other Southeast Gillnet Waters. Similar provisions are also included in the Biological Opinion on the fishery under section 7 of the Endangered Species Act.
Observer Coverage: A dedicated observer program for the Shark Drift Gillnet Fishery has been in place since 1998. Due to the provisions of the ALWTRP, observer coverage has been high during winter months since 2000. However, due to limits on available resources, observer coverage outside of this period was generally low (< 5%) prior to 2000 but has been increasing during the last several years. In 2005, the observer program was expanded to include a limited number of sink gillnets targeting both fish and sharks (Carlson and Betha 2007). Due to the difficulties in identifying the reported effort, the percentage of observer coverage by gear type is difficult to quantify. From 2001 to 2006, the percent annual observer coverage of the drift gillnet fishery was 68, 85, 50, 66, 58, and 48, respectively. The percent annual coverage of the strike component from 2001 to 2006 was 63, 86, 72, 81, and 84, respectively. The sink component of the fishery was observed in 2005 and 2006 with coverage levels of 10% and 22%, respectively. However, given the uncertainties surrounding the level of reported effort in the FLS, these estimates of observer coverage are highly uncertain (Garrison 2007). Due to these uncertainties, and continuing changes in the execution and observer coverage of the fishery, effort levels for the fishery and estimated observer coverage for 2007 and 2008 are not available. The locations of observed strike, drift, and sink sets in the shark gillnet fishery are shown in Figures 41-45. There have been no observed marine mammal interactions since 2003.

Comments: There is a significant level of uncertainty surrounding estimating the total level of effort in this fishery. There is direct evidence of inconsistency in reporting. It is not possible to reliably distinguish trips targeting sharks from those targeting other fish species, and it is not possible to distinguish different types of sets in the logbook data. However, the overall marine mammal and sea turtle bycatch rate is very low, therefore it is unlikely that even severe biases would result in large increases in the estimated total protected species bycatch in this fishery. In addition to marine mammal interactions, this fishery has been the subject of management concern due to recent interactions with endangered sea turtles including Leatherback and Loggerhead Turtles.

Protected Species Interactions: Documented interactions with coastal bottlenose dolphin and Atlantic spotted dolphin were reported in this fishery. There are two documented cases of possible interactions between North Atlantic right whales and the shark drift gillnet fishery off the Florida coast.

Atlantic Blue Crab Trap/Pot
The Blue Crab Trap/Pot Fishery is broadly distributed in estuarine and nearshore coastal waters throughout the mid and south Atlantic. The fishery is estimated to have 6,479 participants deploying gear on a year-round basis. Pots are baited with fish or poultry and are typically set in shallow water. The pot position is marked by either a floating or sinking buoy line attached to a surface buoy. In recent years, reports of strandings with evidence of interactions between bottlenose dolphins and both recreational and commercial crab pot fisheries have been increasing in the Southeast region (McFee and Brooks 1998; Burdett and McFee 2004). Interactions with crab pots appear to generally involve a dolphin becoming wrapped in the buoy line. The total number of these interactions and associated mortality rates has not been documented, but from 2002-2007, SEFSC stranding data show 5 confirmed bottlenose dolphin mortalities due to interactions with blue crab pot gear and 11 bottlenose dolphin disentanglements with live releases. There are also documented interactions with the West Indian manatee, Florida stock. The fishery has been defined as a Category II fishery in the 2011 List of Fisheries (75 FR 68468, November 8, 2010). It is managed under the Bottlenose Dolphin Take Reduction Plan and the Atlantic Large Whale Take Reduction Plan.

Mid-Atlantic Haul/Beach Seine
This beach-based fishery operates primarily along North Carolina’s Outer Banks using small and large mesh gillnets. Small mesh gillnets are generally used in the spring and fall to target gray trout (weakfish), speckled trout, spot, kingfish (sea mullet), bluefish, and harvest fish (star butters). Large mesh gillnets are used to target Atlantic striped bass during the winter and are regulated via North Carolina Fisheries rules and proclamations. Small mesh nets are generally constructed in the manner of a beach seine, although the net material is a combination of monofilament and multifilament. The beach seine system uses a bunt and a wash net that is attached to the beach and fished in the surf (Steve et al. 2001). Conversely, large mesh nets are constructed of all monofilament material and generally used to fish during the Atlantic Ocean striped bass beach seine fishery. Although construction and characteristics of large and small mesh nets differ, they are set and hauled similarly. Nets are deployed out of the stern of the surf dories and set perpendicular to the shoreline. A truck is generally used to haul the net ashore by attaching one end of the net to the truck and pulling it ashore while the other end remains fixed until the end of the haul. North Carolina Division of Marine Fisheries (NCDMF) finalized regulations in October 2008 requiring
fishermen participating in the Atlantic Ocean striped bass beach seine fishery to use nets constructed of all multifilament material (NCDMF Proclamation FF–51–2008), thereby moving closer to the traditional manner of beach seine fishing for large mesh nets. Small mesh nets are not included under NCDMF’s regulations for the Atlantic Ocean striped bass beach seine fishery, and therefore, still operate more in the manner of gillnets rather than beach seines because of their construction with monofilament material and fishing practices. Subsequently, they are listed as a Category I Mid-Atlantic Gillnet fishery in the 2011 List of Fisheries (75 FR 68468, November 8, 2010). Therefore, the Atlantic Ocean striped bass beach seine fishery using large mesh gillnets is now the only fishery included under the Mid-Atlantic Haul/Beach Seine Fishery for North Carolina. The Mid-Atlantic Haul/ Beach Seine Fishery (NC only) is listed as a Category II fishery in the 2010 List of Fisheries (75 FR 68468, November 8, 2010). North Carolina beach-based fishing has been observed since April 7, 1998 by the NMFS Fisheries Sampling Program (Observer Program) based at the NEFSC. The numbers of observed beach seine sets from 1998 to 2008 were 63, 60, 52, 12, 6, 23, 36, 29, 9, 27, and 39. This fishery has observed interactions with estuarine and coastal bottlenose dolphins and is managed under the Bottlenose Dolphin Take Reduction Plan.

North Carolina Long Haul Seine

The Long Haul Seine is an estuarine fishery operating in North Carolina waters with 10-15 participants statewide. The seine consists of a 1000-1200 yard long net pulled by two boats for distances of 1-2 nautical miles (Steve et al. 2001). Fish are encircled by pulling the net around a fixed stake. The fishery targets Weakfish, Spot, Croaker, Menhaden, Bluefish, Spotted Seatrout, and Hagfish, and operates in Pamlico and Core sounds and tributaries. The fishery operates primarily between June and October. Occasional interactions with estuarine and coastal bottlenose dolphins have been reported. The fishery has been defined as a Category II fishery in the 2011 List of Fisheries (75 FR 68468, November 8, 2010) and is managed under the Bottlenose Dolphin Take Reduction Plan.

North Carolina Roe Mullet Stop Net

The Stop Net Fishery is unique to Bogue Banks, North Carolina. The gear consists of a stationary, multi-filament anchored net extended perpendicular to the beach to stop the alongshore migration of Striped Mullet. Once the catch accumulates near the end of the stop net, a beach haul seine is used to capture fish and bring them ashore. The stop net is traditionally left in the water for 1 to 5 days during the fishery season from October to November, but can be left as long as 15 days (Steve et al. 2001). Interactions between this fishery and estuarine and coastal bottlenose dolphins have been reported; however, the total number of interactions has not been estimated. The fishery has been defined as a Category II fishery in the 2011 List of Fisheries (75 FR 68468, November 8, 2010) and is managed under the Bottlenose Dolphin Take Reduction Plan.

Virginia Pound Net

Pound Nets are a stationary gear fished in nearshore coastal and estuarine waters of Virginia. The gear consists of a large mesh lead post clamp perpendicular to the shoreline extending outward to the corral, or “heart”, where the catch accumulates. Target species included Weakfish, Spot, Spanish mackerel, Bluefish, and Croaker. The NEFOP began observing effort in this fishery in 2001. In 2004 and 2005 an experimental fishery was conducted in an area of the Chesapeake Bay that was closed to commercial pound net fishing effort from May to July for sea turtle conservation. The results from these studies determined a modified pound net leader could be used for pound net fishing while providing sea turtle conservation benefits. Occasional interactions with coastal bottlenose dolphins have been observed while monitoring for sea turtle interactions in both the commercial and experimental fisheries. Three takes of coastal bottlenose dolphins were observed in 2003, 2004, and 2009. Stranded bottlenose dolphins have also shown evidence of interactions with pound nets. From 2002 to 2009, 21 bottlenose dolphins were removed dead from Virginia pound nets, and 4 dolphins were disentangled alive (Sue Barco, Virginia Aquarium). Data from the Chesapeake Bay suggest that the likelihood of Bottlenose Dolphin entanglement in pound net leads may be affected by the mesh size of the lead net (Bellmund et al. 1997), but the information is not conclusive. A recent study conducted by Barco et al. in 2009 examined the use of modified pound net leaders adopted for sea turtle conservation because they believed it would also be effective in reducing bottlenose dolphin interactions in pound net leads. The study took place in the lower Chesapeake Bay and evaluated the effect of modified pound net leaders on finfish bycatch to ensure it maintained catch efficiency. Results show modified pound net leader had similar or greater catches of finfish compared to traditional leaders (e.g., leaders that were not modified for sea turtle conservation). The fishery has been defined as a Category II fishery in the 2011 List of Fisheries (75 FR 68468, November 8, 2010) and is managed under the Bottlenose Dolphin Take Reduction Plan.
Mid-Atlantic Menhaden Purse Seine

Between 1994 and 1997, about 18-20 menhaden purse-seine vessels for reduction operated out of two processing facilities in Chesapeake Bay at Reedville, Virginia. Another fleet of vessels 2-5 vessels operated out of a smaller processing facility at Beaufort, North Carolina. Since 1998, only one plant has been operational in Virginia with a total fleet of about 10 vessels. Between 1998 and 2004 the factory at Beaufort operated with 2-3 vessels. After the 2004 fishing season, the factory at Beaufort closed permanently. A majority of the fishing effort by the Virginia fleet occurs in the Virginia portion of Chesapeake Bay, and along the ocean beaches of Eastern Shore Virginia. Most sets in Chesapeake Bay are in the main stem of the Bay, greater than one mile from shore. In summer, the Virginia fleet occasionally ranges as far north as northern New Jersey. Purse-seining for reduction purposes is prohibited by state law in Maryland, Delaware, and New Jersey; hence, purse-seine sets in the ocean off Delmarva and New Jersey are by definition greater than 3 miles from shore. The Virginia fleet ranges south into NC coastal waters during November and December, but this segment of the fishery is highly weather-dependent. Large vessels (up to 200 ft) carrying two small purse seine boats are used for fishing effort, with some smaller vessels (called snapper rigs) about 6-75 feet in length. Schools of menhaden are generally spotted from larger vessels and/or spotter planes. The purse seine is deployed over the school vertically from the large vessel or the two smaller boats. The net floatline and headline has a series of rings threaded with a purse line that is winched closed around the school, and the net is retrieved by power block. The purse seine net is made of nylon fiber with a bar mesh from ¼ to 7/8 inch (about 1-3/4 inch stretched mesh). Net length ranges from 1,000-1,400 feet, with a net dept averaging 65-90 feet. Occasional interactions with coastal bottlenose dolphins have been recorded historically in this fishery. In 2008 and 2009, there was very limited observer coverage; however, there was no systematic coverage prior to these years and the level of incidental interactions with marine mammals is undocumented. The Mid-Atlantic Menhaden Purse Seine Fishery has been defined as a Category II fishery in the 2011 List of Fisheries (75 FR 68468, November 8, 2010) and will be managed under the Bottlenose Dolphin Take Reduction Plan.

Southeastern U.S. Atlantic/Gulf of Mexico Shrimp Trawl

The Shrimp Trawl Fishery operates from North Carolina through the Texas coast virtually year-round, moving seasonally up and down the coast. A recent estimate of fishing effort based upon state dealer trip reports included approximately 23,000 shrimping trips (Epperly et al. 2002). The gear consists of relatively fine-meshed trawls typically fished in a paired fashion on either side of a fishing vessel. Effort occurs in both estuarine and nearshore coastal waters. The Shrimp Trawl Fishery has long been the focus of management actions associated with significant bycatch of both fish species and sea turtles. Observer coverage was historically very sparse and non-systematic. However, in 2007, the observer coverage expanded and became mandatory for fishing vessels to take an observer if selected. Observer coverage currently averages about 1% of the total fishery effort. Occasional interactions with bottlenose dolphins have been observed in the Atlantic and Gulf of Mexico, and there is infrequent evidence of interactions from stranded animals. During 1993-2008, 6 unidentified dolphins and 3 bottlenose dolphins were observed dead in shrimp fishery vessels. The animals were caught in water depths between 7 and 87 m. The unidentified animals were likely either bottlenose dolphins or Atlantic spotted dolphins based upon location and depth. In 2008, an additional dolphin carcass was caught on the tickler of a shrimp trawl; however, the animal's carcass was severely decomposed and may have been captured in this state. This cannot be confirmed without a necropsy. Additionally, in 2002, a fisherman self-reported a take of an unidentified dolphin. The Shrimp Trawl fishery has been defined as a Category II fishery in the 2011 List of Fisheries (75 FR 68468, November 8, 2010).

III. Historical Fishery Descriptions

Atlantic Foreign Mackerel

Prior to 1977, there was no documentation of marine mammal bycatch in DWF activities off the Northeast coast of the U.S. With implementation of the Magnuson Fisheries Conservation and Management Act (MFCMA) in that year, an Observer Program was established which recorded fishery data and information on incidental bycatch of marine mammals. DWF effort in the U.S. Atlantic Exclusive Economic Zone (EEZ) under MFCMA had been directed primarily towards Atlantic Mackerel and Squid. From 1977 through 1982, an average mean of 120 different foreign vessels per year (range 102-161) operated within the U.S. Atlantic EEZ. In 1982, there were 112 different foreign vessels; 16%, or 18, were Japanese Tuna longline vessels operating along the U.S. east coast. This was the first year that the Northeast Regional Observer Program assumed responsibility for observer coverage of the longline vessels. Between 1983 and 1991, the numbers of foreign vessels operating within the U.S. Atlantic EEZ each year were 67, 52, 62, 33, 27, 26, 14, 13, and 9 respectively. Between 1983 and 1988, the numbers of DWF vessels included 3, 5, 7, 6, 8, and 8 respectively, Japanese longline vessels. Observer coverage on DWF vessels was
25-35% during 1977-1982, and increased to 58%, 86%, 95% and 98%, respectively, in 1983-1986. One hundred percent observer coverage was maintained during 1987-1991. Foreign fishing operations for Squid ceased at the end of the 1986 fishing season and for Mackerel at the end of the 1991 season. Documented interactions with white sided dolphins were reported in this fishery.

Pelagic Drift Gillnet

In 1996 and 1997, NMFS issued management regulations which prohibited the operation of this fishery in 1997. The fishery operated during 1998. Then, in January 1999 NMFS issued a Final Rule to prohibit the use of drift net gear in the North Atlantic Swordfish Fishery (50 CFR Part 630). In 1986, NMFS established a mandatory self-reported fisheries information system for Large Pelagic Fisheries. Data files are maintained at the SEFSC. The estimated total number of hauls in the Atlantic Pelagic Drift Gillnet Fishery increased from 714 in 1989 to 1,144 in 1990; thereafter, with the introduction of quotas, effort was severely reduced. The estimated number of hauls from 1991 to 1996 was 233, 243, 232, 197, 164, and 149 respectively. Fifty-nine different vessels participated in this fishery at one time or another between 1989 and 1993. In 1994 to 1998 there were 11, 12, 10, 0, and 11 vessels, respectively, in the fishery. Observer coverage, expressed as percent of sets observed, was 8% in 1989, 6% in 1990, 20% in 1991, 40% in 1992, 42% in 1993, 87% in 1994, 99% in 1995, 64% in 1996, no fishery in 1997, and 99% coverage during 1998. Observer coverage dropped during 1996 because some vessels were deemed too small or unsafe by the contractor that provided observer coverage to NMFS. Fishing effort was concentrated along the southern edge of Georges Bank and off Cape Hatteras, North Carolina. Examination of the species composition of the catch and locations of the fishery throughout the year suggest that the Drift Gillnet Fishery was stratified into two strata: a southern, or winter, stratum and a northern, or summer, stratum. Documented interactions with North Atlantic right whales, humpback whales, sperm whales, pilot whale spp., Mesoplodon spp., Risso’s dolphins, common dolphins, striped dolphins and white sided dolphins were reported in this fishery.

Atlantic Tuna Purse Seine

The Tuna Purse Seine Fishery occurring between the Gulf of Maine and Cape Hatteras, North Carolina is directed at large medium and giant Bluefin Tuna (BFT). Spotter aircraft are typically used to locate fish schools. The official start date, set by regulation, is 15 July of each year. Individual Vessel Quotas (IVQs) and a limited access system prevent a derby fishery situation. Catch rates for large medium and giant Tuna can be high and consequently, the season can last only a few weeks, however, over the last number of years, effort expended by this sector of the BFT fishery has diminished dramatically due to the unavailability of BFT on the fishing grounds.

The regulations allocate approximately 18.6% of the U.S. BFT quota to this sector of the fishery (5 IVQs) with a tolerance limit established for large medium BFT (15% by weight of the total amount of giant BFT landed).

Limited observer data is available for the Atlantic Tuna Purse Seine Fishery. Out of 45 total trips made in 1996, 43 trips (95.6%) were observed. Forty-four sets were made on the 43 observed trips and all sets were observed. A total of 136 days were covered. No trips were observed during 1997 through 1999. Two trips (seven hauls) were observed in October 2000 in the Great South Channel Region. Four trips were observed in September 2001. No marine mammals were observed taken during these trips. Documented interactions with pilot whale spp. were reported in this fishery.

Atlantic Tuna Pelagic Pair Trawl

The Pelagic Pair Trawl Fishery operated as an experimental fishery from 1991 to 1995, with an estimated 171 hauls in 1991, 536 in 1992, 586 in 1993, 407 in 1994, and 440 in 1995. This fishery ceased operations in 1996 when NMFS rejected a petition to consider pair trawl gear as an authorized gear type in the Atlantic Tuna Fishery. The fishery operated from August to November in 1991, from June to November in 1992, from June to October in 1993 (Northridge 1996), and from mid-summer to December in 1994 and 1995. Sea sampling began in October of 1992 (Gerrior et al. 1994) where 48 sets (9% of the total) were sampled. In 1993, 102 hauls (17% of the total) were sampled. In 1994 and 1995, 52% (212) and 55% (238), respectively, of the sets were observed. Nineteen vessels have operated in this fishery. The fishery operated in the area between 35°N to 41°N and 69°W to 72°W. Approximately 50% of the total effort was within a one degree square at 39°N, 72°W, around Hudson Canyon, from 1991 to 1993. Examination of the 1991-1993 locations and species composition of the bycatch, showed little seasonal change for the six months of operation and did not warrant any seasonal or areal stratification of this fishery (Northridge 1996). During the 1994 and 1995 Experimental Pelagic Pair Trawl Fishing Seasons, fishing gear experiments were conducted to collect data on environmental parameters, gear behavior, and gear handling practices to evaluate factors affecting catch and bycatch (Goudy 1995, 1996), but the results were inconclusive. Documented interactions with pilot whale spp., Risso’s dolphin and common dolphins were reported in this fishery.
Part B. Description of U.S. Gulf of Mexico Fisheries

1. Data Sources

Items 1 and 2 describe sources of marine mammal mortality, serious injury or entanglement data, and item 3 describes the source of commercial fishing effort data used to generate maps depicting the location and amount of fishing effort and the numbers of active permit holders. In general, commercial fisheries in the Gulf of Mexico have had little directed observer coverage and the level of fishing effort for most fisheries that may interact with marine mammals is either not reported or highly uncertain. With the exception of the Large Pelagics Longline Fishery, no incidental take estimates are possible for Gulf of Mexico commercial fisheries.

1. Southeast Region Fishery Observer Programs

Two fishery observer programs are managed by the SEFSC that observe commercial fishery activity in the U.S. Gulf of Mexico. The Pelagic Longline Observer Program (POP) administers a mandatory observer program for the U.S. Atlantic Large Pelagics Longline Fishery. The program has been in place since 1992, and randomly allocates observer effort by eleven geographic fishing areas proportional to total reported effort in each area and quarter. Observer coverage levels are mandated under the Highly Migratory Species FMP (HMS FMP, 50 CFR Part 635). The second is the Southeastern Shrimp Otter Trawl Fishery Observer Program. Prior to 2007, this was a voluntary program administered by SEFSC in cooperation with the Gulf and South Atlantic Fisheries Foundation. The program was funding and project dependent, therefore observer coverage is not necessarily randomly allocated across the fishery. In 2007, the observer program was expanded, and it became mandatory for fishing vessels to take an observer if selected. The program now includes more systematic sampling of the fleet based upon reported landings and effort patterns. The total level of observer coverage for this program is ~1% of the total fishery effort. In each Observer Program, the observers record information on the total target species catch, the number and type of interactions with protected species (including both marine mammals and sea turtles), and biological information on species caught. In each Observer Program the observers record information on the total target species catch, the number and type of interactions with protected species including both marine mammals and sea turtles, and biological information on species caught.

2. Regional Marine Mammal Stranding Networks

The Southeast Regional Stranding Network is a component of the Marine Mammal Health and Stranding Response Program (MMHSRP). The goals of the MMHSRP are to facilitate collection and dissemination of data, assess health trends in marine mammals, correlate health with other biological and environmental parameters, and coordinate effective responses to unusual mortality events (Becker et al. 1994). The Southeast Region Strandings Program is responsible for data collection and stranding response coordination along the U.S. Gulf of Mexico coast from Florida through Texas. Prior to 1997, stranding and entanglement data were maintained by the New England Aquarium and the National Museum of Natural History, Washington, D.C. Volunteer participants, acting under a letter of agreement with NOAA Fisheries, collect data on stranded animals that include: species; event date and location; details of the event including evidence of human interactions; determinations of the cause of death; animal disposition; morphology; and biological samples. Collected data are reported to the appropriate Regional Stranding Network Coordinator and are maintained in regional and national databases.

3. Southeast Region Fisheries Logbook System

The FLS is maintained at the SEFSC and manages data submitted from mandatory fishing vessel logbook programs under several FMPs. In 1986, a comprehensive logbook program was initiated for the Large Pelagics Longline Fisheries, and this reporting became mandatory in 1992. Logbook reporting has also been initiated since the early 1990s for a number of other fisheries including: Reef Fish Fisheries; Snapper-Grouper Complex Fisheries; federally managed Shark Fisheries; and King and Spanish Mackerel Fisheries. In each case, vessel captains are required to submit information on the fishing location, the amount and type of fishing gear used, the total amount of fishing effort (e.g., gear sets) during a given trip, the total weight and composition of the catch, and the disposition of the catch during each unit of effort (e.g., kept, released alive, released dead). FLS data are used to estimate the total amount of fishing effort in the fishery and thus expand bycatch rate estimates from observer data to estimates of the total incidental take of marine mammal species in a given fishery.
4. Marine Mammal Authorization Program

Commercial fishing vessels engaging in Category I or II fisheries are required to register under the Marine Mammal Authorization Program (MMAP) in order to lawfully take a marine mammal incidental to fishing operations. All vessel owners, regardless of the category of fishery they are operating in, are required to report all incidental injuries and mortalities of marine mammals that have occurred as a result of fishing operations (NMFS-OPR 2003). Events are reported by fishermen on Mortality/Injury forms then submitted to and maintained by the NMFS Office of Protected Resources. The data reported include: captain and vessel demographics; gear type and target species; date, time and location of event; type of interaction; animal species; mortality or injury code; and number of interactions.

II. Gulf of Mexico Commercial Fisheries

Atlantic Ocean, Caribbean, Gulf of Mexico Large Pelagics Longline

Target Species: Large pelagic fish species including: Swordfish, Yellowfin Tuna, Bigeye Tuna, Bluefin Tuna, Albacore Tuna, Dolphin Fish, Shortfin Mako Shark, and a variety of other shark species.

Number of Permit Holders: < 100

Number of Active Permit Holders: The number of active fishing vessels in the pelagic longline fishery has been declining since a peak number of 361 vessels reporting longline effort during 1995. Over the period between 1995 and 2000, the mean number of vessels reporting effort to the FLS in the Gulf of Mexico was 112. This declined to an annual average of 64 for the period between 2001 and 2007. The total number of fishing vessels reporting effort in the Gulf of Mexico during 2008 was 53, though some of these vessels likely also reported fishing effort in other areas.

Total Effort: The total fishing effort in the Gulf of Mexico component of the Pelagic Longline Fishery has ranged between 2.5 and 4.1 million hooks since 1992. The mean effort reported to the FLS between 1995 and 2000 was 4,545 sets and 3.32 million hooks. Between 2001 and 2007, a mean of 4,522 sets (3.40 million hooks) was reported each year. During 2008, the total reported fishing effort in the Gulf of Mexico component of the fishery was 3,246 sets and 2.39 million hooks (Garrison et al. 2009).

Temporal and Spatial Distribution: Fishing effort occurs year round and operates in waters both inside and outside the U.S. EEZ throughout Atlantic, Caribbean and Gulf of Mexico waters. The Gulf of Mexico component of the fleet operates both in continental shelf and deep continental slope waters from Florida to Texas.

Gear Characteristics: The pelagic longline gear consists of a mainline of >700-lb test monofilament typically ranging between 10 and 45 miles long. At regular intervals along the mainline, bullet-shaped floats are suspended and long sections of the gear are marked by “high-flyers” or radio beacons. Suspended from the mainline are long gangion lines of 200 to 400-lb test monofilament that are typically 100 to 200 feet in length. Fishing depths are most typically between 40 and 120 feet. Hooks of various sizes are attached by a steel swivel leader. Longline sets targeting tunas are typically set at dawn and soak throughout the day with recovery near dusk. Those sets targeting swordfish are more typically night sets. The total amount of time the gear remains in the water including set, soak, andhaul times is typically 10-14 hours. As a result of a recent Biological Opinion on interactions between Atlantic longline gear targeting Tunas and Swordfish and endangered sea turtles, a comprehensive change in the fishing gear occurred in the longline fishery. After August 2004, only circle shaped hooks of 16/0 or 18/0 size can be used throughout the fishery.

Management and Regulations: The Large Pelagics Longline Fishery is listed as a Category I fishery under the MMPA’s 2009 LOF due to frequently observed interactions with marine mammals (73 FR 73066, December 1, 2008). The directed fishery is managed under the FMP for Atlantic Tunas, Swordfish, and Sharks (Highly Migratory Species FMP, 50 CFR Part 635) and the Pelagic Longline Take Reduction Plan implementing regulations (74 FR 23349, May 19, 2009). The fishery has also been the focus of management actions relating to bycatch of billfish. Amendment One to the Atlantic Billfish FMP also pertains to the Large Pelagics Longline Fishery and is consistent with the regulations in the Highly Migratory Species FMP. This fishery is also regulated under the Endangered Species Act resulting from frequent interactions with endangered sea turtle species including both Loggerhead and Leatherback Turtles in the Atlantic and Gulf of Mexico. A Biological Opinion issued by the NMFS Southeast Regional Office in June 2004 mandated the use of circle hooks throughout the fishery, mandated the use of de-
hooking and disentanglement gear by fishermen to reduce the mortality of captured sea turtles, and mandated increased reporting and monitoring of the fishery.

Observer Coverage: The Pelagic Longline Observer Program (POP) is a mandatory observer program managed by the SEFSC that has been in place since 1992. Observers are placed upon randomly selected vessels with total observer effort allocated on a geographic basis proportional to the total amount of fishing effort reported by the fleet. The target observer coverage level was 5% of reported sets through 2001, and was elevated to 8% of total sets in 2002. Between 2000 and 2007, percent observer coverage of reported sets in the Gulf of Mexico component of the fishery was 4, 4, 3, 5, 5, 7, 8, and 16. Observer coverage in the Gulf of Mexico during 2008 was 24.8% of reported sets. This high coverage rate reflects significantly elevated coverage during the second quarter (58.2%) associated with increased observer effort to document bluefin tuna interactions (Garrison et al. 2009). Observed longline sets and marine mammal interactions in the Gulf of Mexico are shown for 2004-2008 in Figures 46 through 50.

Comments: This fishery has been the subject of numerous management actions over the last four years associated with bycatch of both billfish and sea turtles. These changes have resulted in a reduction of overall fishery effort and in the behaviors of the fishery. The most significant change was the closure of the Northeast Distant Water Area off the Canadian Grand Banks and near the Azores as of June 1, 2001 (50 CFR Part 635). In the Gulf of Mexico, a year round closure was implemented in two areas in DeSoto Canyon (NMFS 2003). Additionally, a ban on the use of live fish bait was initiated in 1999 due to concerns over billfish bycatch. The June 2004 Biological Opinion has resulted in a significant change in the gear and fishing practices of this fishery that will likely impact marine mammal bycatch. The majority of interactions with marine mammals in this fishery in the Gulf of Mexico have been with Risso’s Dolphin (Garrison 2003a). There have been more interactions with marine mammals observed recently in association with the very high observer coverage between April and June.

Protected Species Interactions: Gulf of Mexico stocks of Risso’s dolphin, pantropical spotted dolphin, Atlantic spotted dolphin, pilot whales, dwarf or pygmy sperm whales, unidentified beaked whales, sperm whales, killer whales, coastal and continental shelf bottlenose dolphin and offshore bottlenose dolphin.

Spiny Lobster Trap/Pot Fishery

Target Species: Caribbean spiny lobster (*Panulirus argus*), smooth tail spiny lobster (*Panulirus laurivcauda*) and spotted spiny lobster (*Panulirus guttatus*). These species are commonly referred to as crawfish.

Number of Permit Holders: As of May 19, 2009, there were 1,268 State of Florida issued spiny lobster permits (A. Herndon, NMFS, pers. comm., 2010). There are no federal permits for this fishery since the State of Florida issues permits that are also valid in federal waters.

Number of Active Permit Holders: The number of spiny lobster endorsements or licenses (also known as trap numbers) required for any person using traps to harvest spiny lobster in commercial quantities (F.A.C. Chapter 68B-24.0055(1) Florida Statutes) in state waters has declined from nearly 2,500 licenses in the 1998-1999 season to 1,241 licenses for the 2007-2008 season. In state waters, recreational fishers wishing to use traps to harvest spiny lobster are required to have a Special Recreational Crawfish License (SRCL). The number of SRCL holders has also decreased from over 350 licenses in the 1998-1999 season to approximately 200 in the 2007-2008 season.

Total Effort: Over the last 10 years, commercial trap fishing has been the dominant gear type in the spiny lobster fishery, accounting for approximately 70 percent of all commercial landings (Robson 2006). The remaining landings are collected via divers by hand or via bully nets (which accounts for only a very small percentage). A trap limitation program initiated by the State of Florida in 1993 has reduced the number of lobster traps available annually from approximately one million to 485,891 trap tag certificates for the 2010 season (A. Podey, Florida Fish and Wildlife Conservation Commission (FFWCC) to A. Herndon, NMFS, pers. comm., 2010).

Commercial landings of spiny lobster in the contiguous United States have been reported in Florida, Alabama, Georgia, Mississippi, South Carolina and Texas since 1962. However, in 35 of the 45 years from 1962 through 2006, Florida landings, mostly from the Florida Keys, accounted for all of the annual commercial landings; and in each of the other 10 years, annual landings in Florida represented at least 94% of the total pounds commercially landed that year. In 2006, 100% of all 4,773,995 pounds of spiny lobster landings were within the State of Florida. Also 80% of fishing effort for this fishery is within state of Florida waters.
Trap fishing is the most common gear type used in the Florida Keys. Vessels operating in the lower Florida Keys typically fish up to 2,000 traps, but a few fishers may use as many as 5,000 traps (D. Gregory, Florida Sea Grant, to A. Herndon, NMFS, pers. comm., 2006). Vessels fishing off the upper Florida Keys are generally smaller day crafts that carry no more than 500-800 traps. Unlike the larger vessels fishing in the Lower Keys, these fishers tend to pull 100-300 traps per day.

Recreational fishing for spiny lobsters is primarily conducted by divers using scuba equipment, hookah rigs or free-diving to collect lobsters by hand (GMFMC and SAFMC 1987). Recreational fishers without a SRCL are not allowed to use traps to capture lobster.

Temporal and Spatial Distribution: The distribution of the commercial and recreational spiny lobster harvest off Florida is almost exclusively limited to the waters of the Florida Keys (GMFMC and SAFMC 1982). Effort occurs on both the Atlantic and Gulf side of the Florida Keys; however, diving for lobster is most common on the Gulf side (NMFS 2009). Fishing occurs from very nearshore areas out to water depths of 200 ft, although most fishing occurs in waters less than 100 ft.

The commercial and regular recreational spiny lobster seasons (in both state and federal waters of Florida and other Gulf states) start on August 6 and end on March 31 (F.A.C. Chapter 68B-24.005(1) Florida Statutes; 50 CFR 640.20(b)) with the exception of the two-day sport season in which trap gear is prohibited.

Gear Characteristics: Spiny lobster trap/pot gear most commonly used in the commercial fishery is a cube made of wooden slats. Wire traps are occasionally used, but more frequently in deeper water. Concrete is typically poured in the bottom of traps to weight them. A buoy is attached to the trap via a float line and floated at the surface. Buoys attached to spiny lobster traps must be marked with the letter “C.” Tags displaying the crawfish endorsement number are also required on all traps.

The type of bait used in traps depends on fisher preference. Some traps are set unbaited, some are baited with fish scraps, sardines, cat food or cowhide, while others are baited with legal sized or undersized lobsters used to attract larger lobsters. Soak times average from 8 to 28 days, with soak times increasing as the season progresses and catch rates decline (Matthews 2001).

Larger vessels in the Lower Florida Keys may set traps several miles apart and usually allow traps to soak for up to two weeks (Powers and Bannerot 1984). Vessels of this size are also capable of fishing 500 traps a day (GMFMC and SAFMC 1982). The smaller vessels of the Upper Florida Keys also stay closer to shore and the duration of their trips is shorter than the larger vessels operating out of the Lower Keys (GMFMC and SAFMC 1987).

Management and Regulations: The spiny lobster trap/pot fishery is currently a Category III fishery under the MMPA due to a remote likelihood of serious injuries or mortalities to marine mammals (50 CFR 229). Bottlenose dolphin stocks with documented and confirmed interactions with the spiny lobster fishery include the Biscayne Bay and Florida Bay stocks. However, based on the overlap between this fishery and stranding data, other bottlenose stocks such as the Northern Florida Coastal Stock, Central Florida Coastal Stock and the Indian River Lagoon Estuarine System Stock are also potentially impacted by this fishery.

Since spiny lobster fishing effort occurs nearly exclusively in both Florida state and surrounding federal waters, the Fishery Management Plan for Spiny Lobster (SLFMP), jointly managed by the South Atlantic and Gulf of Mexico Fishery Management Councils, basically extends the Florida Fish and Wildlife Commission rules regulating the state fishery to the southeastern U.S. EEZ in order to streamline state and federal management.

The fishery is currently managed via bag limits, minimum size limits, regulated fishing seasons for the commercial and recreational sectors, gear restrictions, trap construction requirements and a trap limitation and permitting program.

Observer Coverage: There is no observer coverage in this fishery.

Comments: Based on the similar gear type used in a number of different trap/pot fisheries (e.g., blue crab, stone
crab, etc.) especially in coastal Florida waters, bottlenose dolphin strandings associated with this fishery are likely underestimated. Derelict trap/pot gear is also a substantial concern for marine life entanglements. It is estimated that between 10-20% of all traps (i.e., 50,000-100,000) are lost annually.

Protected Species Interactions: Based on bottlenose dolphin stranding data from the United States’ Atlantic coast between 2002-April 2009, there have been two bottlenose dolphin strandings likely to have resulted from the lobster pot fishery. Gear determination was based on local knowledge and gear analyses techniques. These animals were most likely associated with the Biscayne Bay or Central Florida Coastal Stocks. An additional eight bottlenose dolphin strandings in Florida had trap/pot gear on the carcass, but the gear could not be definitively identified to a target species or specific fishery. Therefore, based on known interactions with trap/pot gear and bottlenose dolphin stocks in times and areas where the spiny lobster trap/pot fishery is known to occur, the following bottlenose dolphin stocks may also be affected by this fishery: Northern Florida Coastal Stock, Indian River Lagoon Estuarine System Stock, Florida Bay Stock and Biscayne Bay stock.

Southeastern U.S. Atlantic, Gulf of Mexico Stone Crab Trap/Pot Fishery

Target Species: Florida stone crab (*Menippe mercenaria*)

Number of Permit Holders: In 2010, the State of Florida issued 1,282 stone crab licenses and 1,190,285 stone crab trap tags. Currently, there are no federal reporting requirements for the federal stone crab fishery. All data regarding the fishery have been collected via partnership with the State of Florida, through its trip ticket program.

Total Effort: Due to the Stone Crab Trap Reduction Schedule [F.A.C. Chapter 68B-13.010(3)(f) Florida Statutes], the number of commercial trap certificates issued by the State of Florida has decreased from approximately 1,475,000 in the 2002-2003 fishing season to 1,190,285 in the 2010 fishing season. The Stone Crab Trap Reduction Schedule [F.A.C. Chapter 68B-13.010(3)(f) Florida Statutes] will eventually reduce the number of trap tags to 600,000 trap/pots statewide. Pots will be reduced by a pre-specified percentage each year until the number of trap tags reaches 600,000 (Muller et al. 2006).

Florida state regulations limit recreational stone crab trap/pot numbers to five per person [F.A.C. Chapter 68B-13 Florida Statutes]. Because no documentation or registration is required for recreational stone crab fishing, no accurate estimate of the magnitude of this fishery is possible (Bert et al. 1978).

Temporal and Spatial Distribution: The season for commercial and recreational stone crab harvest is from October 15 to May 15.

This commercial fishery operates primarily nearshore in the State of Florida (stone crab fishing outside of this area is likely very minimal). The stone crab trap/pot fishery occurs on both sides of Florida Keys (Gulf of Mexico and Atlantic), but is much more extensive along the Gulf of Mexico side. Crabbers place their traps in waters of 65 foot depth or less and intense trapping extends from the boundary of Everglades National Park through the Gulf of Mexico side of the Marquesas Keys (T. Bert, Florida Fish and Wildlife Conservation Commission (FFWCC), to A. Herndon, NMFS, pers. comm. 2006). Crabbers off Marathon, Florida, typically set traps deeper than the smaller operations of the Upper and Lower Keys, and often work thousands of traps per season (Bert et al. 1978).

Distribution of the stone crab trap/pot fishery varies throughout the Gulf of Mexico side of Florida. The stone crab fishery off Collier County is centered in Chokoloskee. It generally extends from the Shark River Basin to Cape Romano and seaward to approximately a 65 foot depth. Crabbers generally work from 1,000 to 3,000 traps per season; a few crabbers fish as many as 8,000 traps per season (Bert et al. 1978; T. Bert, FFWCC, to A. Herndon, NMFS, pers. comm. 2008). In Lee and Charlotte counties of Florida, the crabbers often fish fewer than 200 trap/pots per season in waters less than 20 feet deep. Within Tampa and Sarasota Bay, crabbers fish between a few hundred to a few thousand traps per season. Crabbers in Tarpon Springs and Homasassa fish thousands of traps seasonally and the fishery offshore from this area appears to be the most heavily fished of any area in the state (T. Bert, FFWCC, unpublished data). Within the Taylor, Dixie, Levy, and Citrus counties of Florida, crabbers may use up to 1,000 traps per season. There are few commercial stone crabbers in the Florida panhandle region.

Gear Characteristics: Traps are the exclusive gear type used for the commercial stone crab fishery. Stone crab traps are constructed of pressure-treated pine or cypress slats or of plastic (Bert et al. 1978). The tops of the traps have a
hinged lid that is opened to gain access to the catch. A 4-inch by 6-inch plastic opening in the center of the lid serves as the mouth of the trap, which allows crabs to enter. Fishers pour concrete into the bottom of these traps to weight them.

All traps must be designed to conform to the specifications established under 50 CFR 654.22, as well as State of Florida statutes. A marking buoy and line are attached to each commercial trap (GMFMC 1979) which is denoted with the letter “X.” No trap is allowed to be larger than 24 by 24 by 24 inches and several requirements also exist for escape vents, throat, sizes and configuration (50 CFR 654.22).

Traps are baited with bait fish or fish remnants. Mullet, grouper or snapper heads and skeletons, jacks, sharks and skates or rays are commonly used baits (GMFMC 1979). Pigs’ feet and cowhide have also become common baits in recent years. One-to-three pounds of bait is generally used per trap. Bait configuration within the trap depends on fisher preference. Some fishers simply place the bait on the bottom of the trap; some place it in a bait container, and others suspend the bait from the top of the trap. Baits may last anywhere from two days to several weeks, depending upon their type, amount and placement inside the trap (Bert et al. 1978).

Baited traps are frequently set in a double line formation, generally 100-300 ft apart, running parallel to a bottom contour. Some fishers prefer to lay traps in a grid, crisscross or circular pattern. Traps are usually set on sandy or grassy bottom with scattered sponges, rocks, soft corals or small coral heads (Bert et al. 1978). The margins of seagrass flats and bottoms with low rocky relief are also favored areas for trap placement (T. Bert, FFWCC, to A. Herndon, NMFS, pers. comm., 2006).

Fishers who operate large vessels usually allow their traps to soak for 10 to 21 days. After the trap has been retrieved, the catch is removed, the trap is re-baited, minor repairs are made to the trap if necessary, and then the trap is reset. Stone crab fishing is conducted almost entirely during one-day trips (GMFMC 1979).

Depending on the experience of the crew, a three-man crew may haul and reset anywhere from 25 to 100 traps per hour. This rate is also highly dependent on tide, weather conditions, smoothness of operation and the condition of equipment. Sixty traps an hour is considered an average rate for larger vessels (Bert et al. 1978). Per season, stone crab fishers operating large vessels may set from 1,500 to 8,000 traps or more; a few leaders in the fishery may own several vessels ranging 60-85 ft in length and fish up to 10,000 traps per season (T. Bert, FFWCC, to A. Herndon, pers. comm., 2006).

Small vessels (30 ft or less) generally fish shallower waters and pull their traps every few days. They use the same techniques described above to set and retrieve their traps, but powered haulback devices are rarely employed. The number of traps worked per day by these single man crews, ranges from less than 25 to 300. Over a season, the number of traps set by these smaller operators varies but may be as high as 1,500 (Bert et al. 1978).

The recreational stone crab trap/pot fishery is composed of crabbers that use much of the same equipment and techniques as the commercial crabbbers described above. Most recreational trap fishers fish only a few traps (Florida state regulations limit recreational stone crab trap number to 5 per person [F.A.C. Chapter 68B-13, Florida Statutes]) and set them in shallow water (20 ft or less). The State of Florida has no specific marking requirement for recreational crab trap/pots.

Management and Regulations: The stone crab trap/pot fishery is currently a Category III fishery under the MMPA due to a remote likelihood of serious injuries or mortalities to marine mammals (50 CFR 229). Stocks most significantly impacted by this fishery include the Biscayne Bay estuarine bottlenose dolphin stock. However, based on stranding data, other bottlenose stocks such as the Lemon Bay Stock; the Pine Sound, Charlotte Harbor, Gasparilla Sound Stock; the Caloosahatchee River Stock; the Florida Bay Stock; the Central Florida Coastal Stock, and the Jacksonville Estuarine System Stock are potentially impacted by this fishery.

The State of Florida and the Gulf of Mexico Fishery Management Council (GMFMC) manage this fishery jointly (GMFMC 2001). The GMFMC and NMFS both acknowledge the fishery is primarily a state fishery, and requires cooperative state/federal management. Federal management of the stone crab fishery consists primarily of the concurrent regulations established to support existing State of Florida regulations.
Under the FMP, the federal management area for the stone crab trap/pot fishery is defined as the EEZ off the coast of Florida from a line extending directly south from the Alabama/Florida boundary (87°31′06″ W. long.) to a line extending directly east from the Dade/Monroe County, Florida, boundary (25°20.4′ N. lat.) (as a federal management area, this does not include state waters within three miles of shore although the regulations are concurrent with state waters). The stone crab management area overlaps jurisdictions of the GMFMC and the South Atlantic Fishery Management Council (SAFMC). Due to this overlap, the GMFMC acts as the lead federal agency for developing, amending, and managing the stone crab fishery and its FMP while working concurrently with the State of Florida, though any federal management decisions are submitted to the SAFMC for review as well.

The fishery is currently managed through seasonal closures, effort limitations, harvest limitations, permit requirements, trap construction requirements, and a passive trap limitation program managed by the State of Florida. Recreational fishers must follow the same guidelines as commercial fishers unless otherwise noted.

Observer Coverage: There is no observer coverage in this fishery.

Comments: Based on the similar gear type used in a number of different pot fisheries (e.g., blue crab, spiny lobster, etc.) especially in coastal Florida waters, bottlenose dolphin strandings associated with this fishery are likely underestimated. Derelict trap/pot gear is also a substantial concern for marine life entanglements.

Protected Species Interactions: Based on Florida Atlantic stranding data from 2002-April 2009 and Florida Gulf of Mexico Stranding Data from 2002-2009, there have been two bottlenose dolphin strandings that have resulted from the stone crab trap/pot fishery and six bottlenose dolphin strandings that are a result of pot fisheries that could not be definitively identified to a specific fishery. Documented potential interactions with the Stone Crab Trap/Pot Fishery possibly affect the following bottlenose dolphin stocks: Lemon Bay; Pine Sound, Charlotte Harbor, Gasparilla Sound; Caloosahatchee River; Florida Bay; Central Florida Coastal, and the Jacksonville Estuarine System.

Gulf of Mexico Blue Crab Trap/Pot Fisheries

The Blue Crab Trap/Pot Fishery is broadly distributed in estuarine and nearshore coastal waters along the Gulf coast. The fishery is estimated to have approximately 4,000 participants deploying gear on a year-round basis. Pots are baited with fish or poultry and are typically set in rows in shallow water. Pot position is marked by either a floating or sinking buoy line attached to a surface buoy. In recent years, reports of strandings in the Atlantic with evidence of interactions between bottlenose dolphins and both recreational and commercial crab pot fisheries have been increasing in the Southeast region (McFee and Brooks 1998). Interactions have also been reported in the Gulf, including both stranding mortalities and entanglements/live releases. Interactions with crab pots appear to generally involve a dolphin becoming wrapped in the buoy line. The total number of these interactions and associated mortality rates has not been documented; although, Southeast Fishery Science Center stranding data document one bottlenose dolphin interaction in 2002 and one in 2003. The fishery has been defined as a Category III fishery in the 2011 List of Fisheries (75 FR 68468, November 8, 2009).

Gulf of Mexico Menhaden Purse Seine Fishery

This fishery operates in coastal waters along the Gulf coast, with the majority of fishing effort concentrated off Louisiana and Mississippi. Fishing effort occurs both in bays, sounds, and in nearshore coastal waters. Between 1994 and 1998, fishery effort averaged approximately 23,000 sets annually (Smith et al. 2002). No observer data is available for the Gulf of Mexico Menhaden Fishery; however, recent interactions with bay, sound and estuary and coastal bottlenose dolphins have been reported through the MMAP and historically through an observer program carried out by Louisiana State University from 1994 to 1996. The fishery has been defined as a Category II fishery in the 2011 List of Fisheries (75 FR 68468, November 8, 2010).

Gulf of Mexico Gillnet Fishery

The Gulf of Mexico gillnet fishery uses strike and straight gillnets to target a wide variety of species including, but not limited to, black drum, sheepshead, weakfish, mullet, spot, croaker, king mackerel, Spanish mackerel, Florida pompano, flounder, shark, menhaden, bluefish, blue runner, ladyfish, spotted seatrout, croaker, kingfish, and red drum. This fishery operates year-round in waters north of the U.S.-Mexico border and west of the fishery management council demarcation line between the Atlantic Ocean and the Gulf of Mexico. Gillnets are not used in Texas, and large gillnets were excluded from Florida state waters after July 1995, but fixed and runaround gillnets are currently in use in Louisiana, Mississippi, and Alabama. In the Gulf of Mexico, coastal migratory pelagic
resources are the only federally managed species for which gillnet gear is authorized, and only run-around gillnetting for these species allowed (CMPR FMP). In state waters, state and Gulf States Marine Fisheries Commission (GSMFC) Interstate FMPs apply. No marine mammal mortalities associated with commercial gillnet fisheries have been reported in these states, but stranding data suggest that marine mammal interactions with gillnets do occur, causing mortality and serious injury. There are no effort or observer data available for these fisheries. Four mortalities of bottlenose dolphins resulted from gillnet entanglements in Texas and Louisiana during 2003, 2004, 2006, and 2007. The 3 Texas mortalities were a result of fisheries sampling and research by Texas Parks and Wildlife, and the Louisiana mortality (2006) occurred during a gulf sturgeon research project for the Army Corps of Engineers. The Gulf of Mexico Gillnet Fisheries are listed as Category II fisheries in the 2011 List of Fisheries (75 FR 68468, November 8, 2010).

LITERATURE CITED

accessed on 11/05/2003

NMFS. 2009. Endangered Species Act – Section 7 Consultation on the Continued Authorization of Fishing under the Fishery Management Plan (FMP) for Spiny Lobster in the South Atlantic and Gulf of Mexico (F/SER/2005/07518). Biological Opinion, August 27.

Appendix III: Fishery Descriptions - List of Figures

Figure 1. 2005 Northeast sink gillnet observed hauls (A) and incidental takes (B).
Figure 2. 2006 Northeast sink gillnet observed hauls (A) and incidental takes (B).
Figure 3. 2007 Northeast sink gillnet observed hauls (A) and incidental takes (B).
Figure 4. 2008 Northeast sink gillnet observed hauls (A) and incidental takes (B).
Figure 5. 2009 Northeast sink gillnet observed hauls (A) and incidental takes (B).
Figure 6. 2005 mid-Atlantic coastal gillnet observed hauls (A) and incidental takes (B).
Figure 7. 2006 mid-Atlantic coastal gillnet observed hauls (A) and incidental takes (B).
Figure 8. 2007 mid-Atlantic coastal gillnet observed hauls (A) and incidental takes (B).
Figure 9. 2008 mid-Atlantic coastal gillnet observed hauls (A) and incidental takes (B).
Figure 10. 2009 mid-Atlantic coastal gillnet observed hauls (A) and incidental takes (B).
Figure 11. 2005 mid-Atlantic bottom trawl observed tows (A) and incidental takes (B).
Figure 12. 2006 mid-Atlantic bottom trawl observed tows (A) and incidental takes (B).
Figure 13. 2007 mid-Atlantic bottom trawl observed tows (A) and incidental takes (B).
Figure 14. 2008 mid-Atlantic bottom trawl observed tows (A) and incidental takes (B).
Figure 15. 2009 mid-Atlantic bottom trawl observed tows (A) and incidental takes (B).
Figure 16. 2005 Northeast bottom trawl observed tows (A) and incidental takes (B).
Figure 17. 2006 Northeast bottom trawl observed tows (A) and incidental takes (B).
Figure 18. 2007 Northeast bottom trawl observed tows (A) and incidental takes (B).
Figure 19. 2008 Northeast bottom trawl observed tows (A) and incidental takes (B).
Figure 20. 2009 Northeast bottom trawl observed tows (A) and incidental takes (B).
Figure 21. 2005 Northeast mid-water trawl observed tows (A) and incidental takes (B).
Figure 22. 2006 Northeast mid-water trawl observed tows (A) and incidental takes (B).
Figure 23. 2007 Northeast mid-water trawl observed tows (A) and incidental takes (B).
Figure 24. 2008 Northeast mid-water trawl observed tows (A) and incidental takes (B).
Figure 25. 2009 Northeast mid-water trawl observed tows (A) and incidental takes (B).
Figure 26. 2005 mid-Atl. mid-water trawl observed tows (A) and incidental takes (B).
Figure 27. 2006 mid-Atl. mid-water trawl observed tows (A) and incidental takes (B).
Figure 28. 2007 mid-Atl. mid-water trawl observed tows (A) and incidental takes (B).
Figure 29. 2008 mid-Atl. mid-water trawl observed tows (A) and incidental takes (B).
Figure 30. 2009 mid-Atl. mid-water trawl observed tows (A) and incidental takes (B).
Figure 31. 2005 Atlantic herring purse seine observed hauls (A) and incidental takes (B).
Figure 32. 2006 Atlantic herring purse seine observed hauls (A) and incidental takes (B).
Figure 33. 2007 Atlantic herring purse seine observed hauls (A) and incidental takes (B).
Figure 34. 2008 Atlantic herring purse seine observed hauls (A) and incidental takes (B).
Figure 35. 2009 Atlantic herring purse seine observed hauls (A) and incidental takes (B).
Figure 36. 2005 Observed sets and marine mammal interactions in the pelagic longline fishery - U.S. Atlantic coast.
Figure 37. 2006 Observed sets and marine mammal interactions in the pelagic longline fishery - U.S. Atlantic coast.
Figure 38. 2007 Observed sets and marine mammal interactions in the pelagic longline fishery - U.S. Atlantic coast.
Figure 39. 2008 Observed sets and marine mammal interactions in the pelagic longline fishery - U.S. Atlantic coast.
Figure 40. 2009 Observed sets and marine mammal interactions in the pelagic longline fishery - U.S. Atlantic coast.
Figure 41. 2005 Observed sets and marine mammal interactions in the Southeast shark drift gillnet fishery.
Figure 42. 2006 Observed sets and marine mammal interactions in the Southeast shark drift gillnet fishery.
Figure 43. 2007 Observed sets and marine mammal interactions in the Southeast shark drift gillnet fishery.
Figure 44. 2008 Observed sets and marine mammal interactions in the Southeast shark drift gillnet fishery.
Figure 45. 2009 Observed sets and marine mammal interactions in the Southeast shark drift gillnet fishery.
Figure 46. 2005 Observed sets and marine mammal interactions in the pelagic longline fishery - Gulf of Mexico.
Figure 47. 2006 Observed sets and marine mammal interactions in the pelagic longline fishery - Gulf of Mexico.
Figure 48. 2007 Observed sets and marine mammal interactions in the pelagic longline fishery - Gulf of Mexico.
Figure 49. 2008 Observed sets and marine mammal interactions in the pelagic longline fishery - Gulf of Mexico.
Figure 50. 2009 Observed sets and marine mammal interactions in the pelagic longline fishery - Gulf of Mexico.
Figure 1. 2005 Northeast sink gillnet observed hauls (A) and observed takes (B).
Figure 2. 2006 Northeast sink gillnet observed hauls (A) and observed takes (B).

Multispecies Fisheries Management Plan year-round closures:
- Closed Area 1
- Closed Area 2
- Western Gulf of Maine Closed Area
- Nantucket Lightship Closed Area
- Cashes Ledge Closure

Harbor porpoise Take Reduction Plan management areas:
- Offshore Closure
- Northeast Closure
- MidCoast Closure
- Mass Bay Closure
- Cape Cod South Closure
- Cashes Ledge Closure

2006 Observed takes within (white symbols) and not within (black symbols) the time frame of pinger regulated areas:
- gray seal
- harbor porpoise
- unknown porpoise/dolphin
- unknown seal
- common dolphin
- gray seal
- harbor porpoise
- harbor porpoise/harp seal
- harbor porpoise/unknown seal
- harbor porpoise/unknown seal/grey seal
- harbor seal
- harp seal
- unknown seal
- white-sided dolphin
Figure 3. 2007 Northeast sink gillnet observed hauls (A) and observed takes (B).

Multispecies Fisheries Management Plan year-round closures:
- Closed Area 1
- Closed Area 2
- Western Gulf of Maine Closed Area
- Nantucket Lightship Closed Area
- Cashes Ledge Closure

Harbor porpoise Take Reduction Plan management areas:
- Offshore Closure
- Northeast Closure
- MidCoast Closure
- Mass Bay Closure
- Cape Cod South Closure
- Cashes Ledge Closure

2007 Observed takes within (white symbols) and not within (black symbols) the time frame of gillnet regulated areas.
Figure 4. 2008 Northeast sink gillnet observed hauls (A) and observed takes (B).
Figure 5. 2009 Northeast sink gillnet observed hauls (A) and observed takes (B).

Multispecies Fisheries Management Plan year-round closures:
- Closed Area 1
- Closed Area 2
- Western Gulf of Maine Closed Area
- Nantucket Lightship Closed Area
- Cashes Ledge Closure

Harbor porpoise Take Reduction Plan management areas:
- Offshore Closure
- Northeast Closure
- MidCoast Closure
- Mass Bay Closure
- Cape Cod South Closure
- Cashes Ledge Closure

(A) 2009 observed hauls within the pinger regulated areas
- 2009 observed hauls not within the pinger regulated areas

(B) Observed takes within (white symbols) and not within (black symbols) the time frame of pinger regulated areas
Figure 6. 2005 Mid-Atlantic gillnet observed hauls (A) and observed takes (B).

Harbor porpoise Take Reduction Plan management areas:
- Southern mid-Atlantic waters
- New Jersey Mudhole
- Waters off New Jersey

(A) Observed hauls - 2005

(B) Observed incidental takes - 2005
Figure 7. 2006 Mid-Atlantic gillnet observed hauls (A) and observed takes (B).

Harbor porpoise Take Reduction Plan management areas:

- Southern mid-Atlantic waters
- New Jersey Mudhole
- Waters off New Jersey
Figure 8. 2007 Mid-Atlantic gillnet observed hauls (A) and observed takes (B).

Harbor porpoise Take Reduction Plan management areas:
- Southern mid-Atlantic waters
- New Jersey Mudhole
- Waters off New Jersey
Figure 9. 2008 Mid-Atlantic gillnet observed hauls (A) and observed takes (B).

Harbor porpoise Take Reduction Plan management areas:
- Southern mid-Atlantic waters
- New Jersey Mudhole
- Waters off New Jersey
Figure 10. 2009 Mid-Atlantic gillnet observed hauls (A) and observed takes (B).

Harbor porpoise Take Reduction Plan management areas:
- Southern mid-Atlantic waters
- New Jersey Mudhole
- waters off New Jersey

2009 Observed mid-Atlantic gillnet incidental takes
- harbor porpoise
- harp seal
- harbor seal
Figure 11. 2005 Mid-Atlantic bottom trawl observed tows (A) and observed takes (B).
Figure 12. 2006 Mid-Atlantic bottom trawl observed tows (A) and observed takes (B).
Figure 13. 2007 Mid-Atlantic bottom trawl observed tows (A) and observed takes (B).
Figure 14. 2008 Mid-Atlantic bottom trawl observed tows (A) and observed takes (B).
Figure 15. 2009 Mid-Atlantic bottom trawl observed tows (A) and observed takes (B).
Figure 16. 2005 Northeast bottom trawl observed tows (A) and observed takes (B).
Figure 17. 2006 Northeast bottom trawl observed tows (A) and observed takes (B).
Figure 18. 2007 Northeast bottom trawl observed tows (A) and observed takes (B).
Figure 19. 2008 Northeast bottom trawl observed tows (A) and observed takes (B).
Figure 20. 2009 Northeast bottom trawl observed tows (A) and observed takes (B).
Figure 21. 2005 Northeast mid-water trawl observed tows (A) and observed takes (B).
Figure 22. 2006 Northeast mid-water trawl observed tows (A) and observed takes (B).
Figure 23. 2007 Northeast mid-water trawl observed tows (A) and observed takes (B).
Figure 24. 2008 Northeast mid-water trawl observed tows (A) and observed takes (B).
Figure 25. 2009 Northeast mid-water trawl observed tows (A) and observed takes (B).
Figure 26. 2005 Mid-Atlantic mid-water trawl observed tows (A) and observed takes (B).
Figure 27. 2006 Mid-Atlantic mid-water trawl observed tows (A) and observed takes (B).
Figure 28. 2007 Mid-Atlantic mid-water trawl observed tows (A) and observed takes (B).
Figure 29. 2008 Mid-Atlantic mid-water trawl observed tows (A) and observed takes (B).
Figure 30. 2009 Mid-Atlantic mid-water trawl observed tows (A) and observed takes (B).
Figure 31. 2005 Herring Purse Seine observed hauls (A) and observed takes (B).
Figure 32. 2006 Herring Purse Seine observed hauls (A) and observed takes (B).
Figure 33. 2007 Herring Purse Seine observed hauls (A) and observed takes (B).
Figure 34. 2008 Herring Purse Seine observed hauls (A) and observed takes (B).
Figure 35. 2009 Herring Purse Seine observed hauls (A) and observed takes (B).
Figure 36. Observed sets and marine mammal interactions in the Pelagic longline fishery along the U.S. Atlantic coast during 2005. The boundaries of the Florida East Coast (FEC), South Atlantic Bight (SAB), Mid-Atlantic Bight (MAB), Northeast Coastal (NEC), and Sargasso Sea (SAR) fishing areas are shown. Seasonal closed areas instituted in 2001 under the HMS FMP are shown as hatched areas.
Figure 37. Observed sets and marine mammal interactions in the Pelagic longline fishery along the U.S. Atlantic coast during 2006. The boundaries of the Florida East Coast (FEC), South Atlantic Bight (SAB), Mid-Atlantic Bight (MAB), Northeast Coastal (NEC), and Sargasso Sea (SAR) fishing areas are shown. Seasonal closed areas instituted in 2001 under the HMS FMP are shown as hatched areas.
Figure 38. Observed sets and marine mammal interactions in the Pelagic longline fishery along the U.S. Atlantic coast during 2007. The boundaries of the Florida East Coast (FEC), South Atlantic Bight (SAB), Mid-Atlantic Bight (MAB), Northeast Coastal (NEC), and Sargasso Sea (SAR) fishing areas are shown. Seasonal closed areas instituted in 2001 under the HMS FMP are shown as hatched areas.
Figure 39. Observed sets and marine mammal interactions in the Pelagic longline fishery along the U.S. Atlantic coast during 2008. The boundaries of the Florida East Coast (FEC), South Atlantic Bight (SAB), Mid-Atlantic Bight (MAB), Northeast Coastal (NEC), and Sargasso Sea (SAR) fishing areas are shown. Seasonal closed areas instituted in 2001 under the HMS FMP are shown as hatched areas.
Figure 40. Observed sets and marine mammal interactions in the Pelagic longline fishery along the U.S. Atlantic coast during 2009. The boundaries of the Florida East Coast (FEC), South Atlantic Bight (SAB), Mid-Atlantic Bight (MAB), Northeast Coastal (NEC), and Sargasso Sea (SAR) fishing areas are shown. Seasonal closed areas instituted in 2001 under the HMS FMP are shown as hatched areas.
Figure 41. Observed sets and marine mammal interactions in the Shark drift gillnet fishery off Florida and Georgia during 2005. Fishery effort is restricted to during winter months north of 27°51’ N, and the majority of observer coverage occurs during this period. Both drift and “strike” sets by observed vessels are shown. No interactions with marine mammals were observed.
Figure 42. Observed sets and marine mammal interactions in the Shark drift gillnet fishery off Florida and Georgia during 2006. Fishery effort is restricted to during winter months north of 27°51’ N, and the majority of observer coverage occurs during this period. Drift, strike, and sink gillnet sets by observed vessels are shown. No interactions with marine mammals were observed.
Figure 43. Observed sets and marine mammal interactions in the Shark drift gillnet fishery off Florida and Georgia during 2007. Fishery effort is restricted to during winter months north of 27°51’ N, and the majority of observer coverage occurs during this period. Drift, strike, and sink gillnet sets by observed vessels are shown. No interactions with marine mammals were observed.
Figure 44. Observed sets and marine mammal interactions in the Shark drift gillnet fishery off Florida and Georgia during 2008. Fishery effort is restricted to during winter months north of 27°51’ N, and the majority of observer coverage occurs during this period. Drift, strike, and sink gillnet sets by observed vessels are shown. No interactions with marine mammals were observed.
Figure 45. Observed sets and marine mammal interactions in the Shark drift gillnet fishery off Florida and Georgia during 2009. Fishery effort is restricted to during winter months north of 27°51’ N, and the majority of observer coverage occurs during this period. Drift, strike, and sink gillnet sets by observed vessels are shown. No interactions with marine mammals were observed.
Figure 46. Observed sets in the Pelagic longline fishery in the Gulf of Mexico during 2005. Closed areas in the DeSoto canyon instituted in 2001 are shown as hatched areas.

![Map of Pelagic Longline Fishery in the Gulf of Mexico during 2005]

Figure 47. Observed sets in the Pelagic longline fishery in the Gulf of Mexico during 2006. Closed areas in the DeSoto canyon instituted in 2001 are shown as hatched areas.

![Map of Pelagic Longline Fishery in the Gulf of Mexico during 2006]
Figure 48. Observed sets in the Pelagic longline fishery in the Gulf of Mexico during 2007. Closed areas in the DeSoto canyon instituted in 2001 are shown as hatched areas.

Figure 49. Observed sets in the Pelagic longline fishery in the Gulf of Mexico during 2008. Closed areas in the DeSoto canyon instituted in 2001 are shown as hatched areas.
Figure 50. Observed sets in the Pelagic longline fishery in the Gulf of Mexico during 2009. Closed areas in the DeSoto canyon instituted in 2001 are shown as hatched areas.
<table>
<thead>
<tr>
<th>Survey Number</th>
<th>Year</th>
<th>Season</th>
<th>Platform</th>
<th>Track line length (km)</th>
<th>Area</th>
<th>Agency/Program</th>
<th>Analysis</th>
<th>Corrected for g(0)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1982</td>
<td>year-round</td>
<td>plane (AT-11; 1978-1982)</td>
<td>211,585</td>
<td>Cape Hatteras, NC to Nova Scotia, continental shelf and shelf edge waters</td>
<td>CETAP</td>
<td>Line-transect analyses of distance data</td>
<td>N</td>
<td>(CETAP 1982)</td>
</tr>
<tr>
<td>2</td>
<td>1990</td>
<td>Aug</td>
<td>ship (Chapman)</td>
<td>2,067</td>
<td>Cape Hatteras, NC to Southern New England, North wall of the Gulf Stream</td>
<td>NEC</td>
<td>One team data analyzed by DISTANCE.</td>
<td>N</td>
<td>(NMFS 1990)</td>
</tr>
<tr>
<td>3</td>
<td>1991</td>
<td>Jul-Aug</td>
<td>ship (Abel-J)</td>
<td>1,962</td>
<td>Gulf of Maine, lower Bay of Fundy, southern Scotian Shelf</td>
<td>NEC</td>
<td>Two independent team data analyzed with modified direct-duplicate method.</td>
<td>Y</td>
<td>(Palka 1995)</td>
</tr>
<tr>
<td>4</td>
<td>1991</td>
<td>Aug</td>
<td>boat (Sneak Attack)</td>
<td>640</td>
<td>inshore bays of Maine</td>
<td>NEC</td>
<td>One team data analyzed by DISTANCE.</td>
<td>Y</td>
<td>(Palka 1995)</td>
</tr>
<tr>
<td>5</td>
<td>1991</td>
<td>Aug-Sep</td>
<td>plane 1(AT-11)</td>
<td>9,663</td>
<td>Cape Hatteras, NC to Nova Scotia, continental shelf and shelf edge waters</td>
<td>NEC/SE/C</td>
<td>One team data analyzed by DISTANCE.</td>
<td>N</td>
<td>(NMFS 1991)</td>
</tr>
<tr>
<td>6</td>
<td>1991</td>
<td>Aug-Sep</td>
<td>plane 2 (Twin Otter)</td>
<td>4,032</td>
<td>Cape Hatteras, NC to Nova Scotia, continental shelf and shelf edge waters</td>
<td>NEC/SE/C</td>
<td>One team data analyzed by DISTANCE.</td>
<td>N</td>
<td>(NMFS 1991)</td>
</tr>
<tr>
<td>7</td>
<td>1991</td>
<td>Jun-Jul</td>
<td>ship (Chapman)</td>
<td>4,032</td>
<td>Cape Hatteras to Georges Bank, between 200 and 2,000m isobaths</td>
<td>NEC</td>
<td>One team data analyzed by DISTANCE.</td>
<td>N</td>
<td>(Waring et al. 1992; Waring 1998)</td>
</tr>
<tr>
<td>8</td>
<td>1992</td>
<td>Jul-Sep</td>
<td>ship (Abel-J)</td>
<td>3,710</td>
<td>N. Gulf of Maine and lower Bay of Fundy</td>
<td>NEC</td>
<td>Two independent team data analyzed with modified direct-duplicate method.</td>
<td>Y</td>
<td>(Smith et al. 1993)</td>
</tr>
<tr>
<td>9</td>
<td>1993</td>
<td>Jun-Jul</td>
<td>ship (Delaware II)</td>
<td>1,874</td>
<td>S. edge of Georges Bank, across the Northeast Channel, to the SE. edge of the Scotian Shelf</td>
<td>NEC</td>
<td>One team data analyzed by DISTANCE.</td>
<td>(NMFS 1993)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1994</td>
<td>Aug-Sep</td>
<td>ship (Relentless)</td>
<td>534</td>
<td>shelf edge and slope waters of Georges Bank</td>
<td>NEC</td>
<td>One team data analyzed by DISTANCE.</td>
<td>N</td>
<td>(NMFS 1994)</td>
</tr>
<tr>
<td>11</td>
<td>1995</td>
<td>Aug-Sep</td>
<td>plane (Skymaster)</td>
<td>8,427</td>
<td>Gulf of St. Lawrence</td>
<td>DFO</td>
<td>One team data analyzed using quenouille’s jackknife bias reduction procedure that modeled the left truncated sighting curve</td>
<td>N</td>
<td>(Kingsley and Reeves 1998)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>12</td>
<td>1995</td>
<td>Jul-Sep</td>
<td>2 ships (Abel-J and Pelican) and plane (Twin Otter)</td>
<td>32,600</td>
<td>Virginia to the mouth of the Gulf of St. Lawrence</td>
<td>NEC</td>
<td>Ship: two independent team data analyzed with modified direct-duplicate method. Plane: one team data analyzed by DISTANCE.</td>
<td>Ship: Y. Plane: Y (only harbor porpoise) N (rest of species)</td>
<td>(Palka 1996)</td>
</tr>
<tr>
<td>13</td>
<td>1996</td>
<td>Jul-Aug</td>
<td>plane</td>
<td>3,993</td>
<td>Northern Gulf of St. Lawrence</td>
<td>DFO</td>
<td>Quenouille’s jackknife bias reduction procedure on line-transect methods that modeled the left truncated sighting curve</td>
<td>N</td>
<td>(Kingsley and Reeves 1998)</td>
</tr>
<tr>
<td>14</td>
<td>1998</td>
<td>Jul-Aug</td>
<td>ship</td>
<td>4,163</td>
<td>south of Maryland</td>
<td>SEC</td>
<td>One team data analyzed by DISTANCE.</td>
<td>N</td>
<td>(Mullin and Fulling 2003)</td>
</tr>
<tr>
<td>16</td>
<td>1998</td>
<td>Jul-Sep</td>
<td>ship (Abel-J) and plane (Twin Otter)</td>
<td>15,900</td>
<td>north of Maryland</td>
<td>NEC</td>
<td>Ship: two independent team data analyzed with the modified direct-duplicate or Palka & Hammond analysis methods, depending on the presence of responsive movement. Plane: one team data analyzed by DISTANCE.</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1999</td>
<td>Jul-Aug</td>
<td>ship (Abel-J) and plane (Twin Otter)</td>
<td>6,123</td>
<td>south of Cape Cod to mouth of Gulf of St. Lawrence</td>
<td>NEC</td>
<td>Ship: two independent team data analyzed with modified direct-duplicate or Palka & Hammond analysis methods, depending on the presence of responsive movement. Plane: circle-back data pooled with aerial data collected in 1999, 2002, 2004, 2006, 2007, and 2008 to calculate pooled g(0)'s and year-species specific abundance estimates for all years except 2008.</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>2002</td>
<td>Feb-Apr</td>
<td>ship (Gunter)</td>
<td>4,592</td>
<td>SE US continental shelf Delaware - Florida</td>
<td>SEC</td>
<td>One team data analyzed by DISTANCE.</td>
<td>N</td>
<td>(Garrison et al. 2003)</td>
</tr>
<tr>
<td>20</td>
<td>2002</td>
<td>Jun-Jul</td>
<td>plane</td>
<td>6,734</td>
<td>Florida to New Jersey</td>
<td>SEC</td>
<td>Two independent team data analyzed with modified</td>
<td>Y</td>
<td>(Garrison 2003)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>2004</td>
<td>Jun-Aug</td>
<td>ship (Gunter)</td>
<td>5,659</td>
<td>Florida to Maryland</td>
<td>SEC</td>
<td>Two-independent-team data analyzed with modified direct-duplicate method.</td>
<td>Y</td>
<td>(Garrison et al. in prep)</td>
</tr>
<tr>
<td>22</td>
<td>2004</td>
<td>Jun-Aug</td>
<td>ship (Endeavor) and plane (Twin Otter)</td>
<td>10,761</td>
<td>Maryland to Bay of Fundy</td>
<td>NEC</td>
<td>Same methods used in survey 15.</td>
<td>Y</td>
<td>(Palka 2006)</td>
</tr>
<tr>
<td>23</td>
<td>2006</td>
<td>Aug</td>
<td>plane (Twin Otter)</td>
<td>10,676</td>
<td>Georges Bank to Bay of Fundy</td>
<td>NEC</td>
<td>Same as for plane in survey 15.</td>
<td>Y</td>
<td>Palka (in prep)</td>
</tr>
<tr>
<td>24</td>
<td>2007</td>
<td>Aug</td>
<td>ship (Bigelow) and plane (Twin Otter)</td>
<td>8,195</td>
<td>Georges Bank to Bay of Fundy</td>
<td>NEC</td>
<td>Ship: Tracker data analyzed by DISTANCE. Plane: same as for plane in survey 15.</td>
<td>Y</td>
<td>Palka (in prep)</td>
</tr>
<tr>
<td>25</td>
<td>2007</td>
<td>July-Aug</td>
<td>plane</td>
<td>46,804</td>
<td>Canadian waters from Nova Scotia to Newfoundland</td>
<td>DFO</td>
<td>uncorrected counts</td>
<td>N</td>
<td>(Lawson and Gosselin 2009)</td>
</tr>
<tr>
<td>26</td>
<td>2008</td>
<td>Aug</td>
<td>plane (Twin Otter)</td>
<td>6,267</td>
<td>NY to Maine in US waters</td>
<td>NEC</td>
<td>Same as for plane in survey 15.</td>
<td>Y</td>
<td>Palka (in prep)</td>
</tr>
<tr>
<td>27</td>
<td>2001</td>
<td>May-June</td>
<td>plane</td>
<td>na</td>
<td>Maine coast</td>
<td>NEC/U M</td>
<td>corrected counts</td>
<td>N</td>
<td>(Gilbert et al. 2005)</td>
</tr>
<tr>
<td>28</td>
<td>1999</td>
<td>March</td>
<td>plane</td>
<td>na</td>
<td>Cape Cod</td>
<td>NEC</td>
<td>uncorrected counts</td>
<td>N</td>
<td>(Barlas 1999)</td>
</tr>
<tr>
<td>29</td>
<td>1983-1986</td>
<td>1983 (Fall) 1984 (Winter, Spring, Summer) 1985 (Summer, Fall) 1986 (Winter)</td>
<td>plane (Beechcraft D-18S modified with a bubble nose)</td>
<td>103,490 total 25,627 (bays and sounds) 36,685 (coastal) 41,178 (outer continental shelf, OCS)</td>
<td>northern Gulf of Mexico bays and sounds, coastal waters from shoreline to 18-m isobath, and OCS waters from 18-m isobath to 9.3 km past the 18-m isobath</td>
<td>SEC</td>
<td>One team data analyzed with Line-transect theory</td>
<td>N</td>
<td>(Scott et al. 1989)</td>
</tr>
<tr>
<td>30</td>
<td>1991-1994</td>
<td>Apr-June</td>
<td>ship (Oregon II)</td>
<td>22,041</td>
<td>northern Gulf of Mexico from 200 m to U.S. EEZ</td>
<td>SEC</td>
<td>One team data analyzed by DISTANCE</td>
<td>N</td>
<td>(Hansen et al. 1995)</td>
</tr>
<tr>
<td>31</td>
<td>1992-1993</td>
<td>Sep-Oct</td>
<td>plane (Twin Otter)</td>
<td>5,578 (bays and sounds) 4,806 (coastal) 7,678 (outer continental shelf, OCS)</td>
<td>northern Gulf of Mexico bays and sounds, coastal waters from shoreline to 18-m isobath, and OCS waters from 18-m isobath to 9.3 km past the 18-m isobath</td>
<td>GOME X92 GOME X93</td>
<td>One team data analyzed by DISTANCE</td>
<td>N</td>
<td>(Blaylock and Hoggard 1994)</td>
</tr>
<tr>
<td>32</td>
<td>1994</td>
<td>Sep-Nov</td>
<td>plane (Twin Otter)</td>
<td>1,155 (bays and sounds) 1,953</td>
<td>northern Gulf of Mexico bays and sounds, coastal waters from shoreline</td>
<td>GOME X94</td>
<td>One team data analyzed by DISTANCE</td>
<td>N</td>
<td>NMFS unpub. data</td>
</tr>
<tr>
<td>No.</td>
<td>Year</td>
<td>Period</td>
<td>Method Description</td>
<td>Sample Size</td>
<td>Location Description</td>
<td>Data Source</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---------------</td>
<td>-------------------</td>
<td>--</td>
<td>-------------</td>
<td>--</td>
<td>----------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>1996-1997, 1999-2001</td>
<td>Apr-June</td>
<td>Ship (Oregon II and Gunter)</td>
<td>12,162</td>
<td>Northern Gulf of Mexico from 200 m to U.S. EEZ</td>
<td>SEC One team data analyzed by DISTANCE</td>
<td>N (Mullin and Fulling 2004)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>1998-2001</td>
<td>end Aug-early Oct</td>
<td>Ship (Gunter and Oregon II)</td>
<td>2,196</td>
<td>Northern Gulf of Mexico outer continental shelf (OCS, 20-200 m)</td>
<td>SEC One team data analyzed by DISTANCE</td>
<td>N (Fulling et al. 2003)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>2004</td>
<td>12-13 Jan</td>
<td>Helicopter</td>
<td>Sable Island</td>
<td>DFO Pop count na</td>
<td>(Bowen et al. 2007)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>2004</td>
<td></td>
<td>Plane</td>
<td>Gulf of St Lawrence and Nova Scotia Eastern Shore</td>
<td>DFO Pop count</td>
<td>(Hamill 2005)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>2009</td>
<td>10 June – 13 August</td>
<td>Ship</td>
<td>4,600</td>
<td>Northern Gulf of Mexico from 200m to U.S. EEZ</td>
<td>SEC</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

APPENDIX IV: Table B. Abundance estimates – "Survey Number" refers to surveys described in Table A. "Best" estimate for each species in bold font.

<table>
<thead>
<tr>
<th>Species</th>
<th>Stock</th>
<th>Year</th>
<th>Nbest</th>
<th>CV</th>
<th>Survey Number</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humpback Whale</td>
<td>Gulf of Maine</td>
<td>1992</td>
<td>591</td>
<td></td>
<td></td>
<td>minimum pop'n size estimated from photo-ID data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1993</td>
<td>652</td>
<td>0.29</td>
<td></td>
<td>YONAH sampling (Clapham et al. 2003)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1997</td>
<td>497</td>
<td></td>
<td></td>
<td>minimum pop'n size estimated from photo-ID data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1999</td>
<td>902</td>
<td>0.45</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2002</td>
<td>521</td>
<td>0.67</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2004</td>
<td>359</td>
<td>0.75</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2006</td>
<td>847</td>
<td>0.55</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Fin Whale</td>
<td>Western North Atlantic</td>
<td>1995</td>
<td>2,200</td>
<td>0.24</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1999</td>
<td>2,814</td>
<td>0.21</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2002</td>
<td>2,933</td>
<td>0.49</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2004</td>
<td>1,925</td>
<td>0.55</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2006</td>
<td>2,269</td>
<td>0.37</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2007</td>
<td>1,352</td>
<td>0.26</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2007</td>
<td>3,985</td>
<td>0.24</td>
<td>23+25</td>
<td></td>
</tr>
<tr>
<td>Sei Whale</td>
<td>Nova Scotia</td>
<td>1977</td>
<td>1,393-2,248</td>
<td></td>
<td></td>
<td>based on tag-recapture data (Mitchell and Chapman 1977)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1977</td>
<td>870</td>
<td></td>
<td></td>
<td>based on census data (Mitchell and Chapman 1977)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1982</td>
<td>280</td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

285
<table>
<thead>
<tr>
<th>Year</th>
<th>Minke Whale</th>
<th>Sperm Whale</th>
<th>Kogia spp.</th>
<th>Beaked Whales</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Canadian East Coast</td>
<td>North Atlantic</td>
<td>Western North Atlantic</td>
<td>Western North Atlantic</td>
</tr>
</tbody>
</table>
| 2002 | 71 | 1.01 | 21 | 120 | 0.71 | 1
| 2004 | 386 | 0.85 | 23 | 4804 | 0.38 | 21+22 |
| 2006 | 207 | 0.62 | 24 | 395 | 0.4 | 21+22 |
| 1982 | 320 | 0.23 | 1 | 1982 | 1.01 | 1
| 1992 | 2,650 | 0.31 | 3+8 | 1998 | 442 | 0.51 | 2
| 1993 | 330 | 0.66 | 9 | 1990 | 262 | 0.99 | 7
| 1995 | 2,790 | 0.32 | 12 | 1991 | 370 | 0.65 | 6
| 1995 | 1,020 | 0.27 | 11 | 1991 | 612 | 0.73 | 5
| 1996 | 620 | 0.52 | 13 | 1993 | 330 | 0.66 | 9
| 1999 | 2,998 | 0.19 | 17 | 1994 | 623 | 0.52 | 10
| 2002 | 756 | 0.9 | 18 | 1995 | 2,698 | 0.67 | 12
| 2004 | 600 | 0.61 | 22 | 1998 | 2,848 | 0.49 | 16
| 2006 | 3,312 | 0.74 | 23 | 1998 | 1,181 | 0.51 | 14
| 2007 | 3,242 | 25 | 2004 | 2,607 | 0.57 | 22
| 2007 | 5,675 | 38 | 2004 | 2,197 | 0.47 | 21
| 2007 | 8,987 | 0.32 | 23+25 | 2004 | 395 | 0.4 | 21+22 |

Estimate summed from north and south surveys
<table>
<thead>
<tr>
<th>Year</th>
<th>#2004</th>
<th>#2005</th>
<th>#2006</th>
<th>#21</th>
<th>#22</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>674</td>
<td>0.36</td>
<td>21</td>
<td></td>
<td></td>
<td>Estimate summed from north and south surveys</td>
</tr>
<tr>
<td>2004</td>
<td>3,513</td>
<td>0.63</td>
<td>21+22</td>
<td>21</td>
<td>22</td>
<td>Estimate summed from north and south surveys</td>
</tr>
<tr>
<td>2006</td>
<td>922</td>
<td>1.47</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1982</td>
<td>4,980</td>
<td>0.34</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1991</td>
<td>11,017</td>
<td>0.58</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1991</td>
<td>6,496</td>
<td>0.74</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1991</td>
<td>16,818</td>
<td>0.52</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>212</td>
<td>0.62</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>5,587</td>
<td>1.16</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>18,631</td>
<td>0.35</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>9,533</td>
<td>0.5</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>28,164</td>
<td>0.29</td>
<td>15+17</td>
<td>21</td>
<td>22</td>
<td>Estimate summed from north and south surveys</td>
</tr>
<tr>
<td>2002</td>
<td>69,311</td>
<td>0.76</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>15,053</td>
<td>0.78</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>5,426</td>
<td>0.54</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>20,479</td>
<td>0.59</td>
<td>21+22</td>
<td>21</td>
<td>22</td>
<td>Estimate summed from north and south surveys</td>
</tr>
<tr>
<td>2006</td>
<td>14,408</td>
<td>0.38</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Western North Atlantic

Risso's Dolphin

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50,000</td>
<td>43,000</td>
<td>11,120</td>
<td>3,636</td>
<td>3,368</td>
<td>5,377</td>
<td>668</td>
<td>8,176</td>
<td>9,776</td>
<td>1,600</td>
<td>9,800</td>
<td>5,109</td>
<td>5,408</td>
<td>15,728</td>
<td>15,411</td>
</tr>
<tr>
<td></td>
<td>43,000</td>
<td>96,000</td>
<td>0.29</td>
<td>0.36</td>
<td>0.28</td>
<td>0.53</td>
<td>0.55</td>
<td>0.65</td>
<td>0.55</td>
<td>0.65</td>
<td>0.34</td>
<td>0.41</td>
<td>0.56</td>
<td>0.34</td>
<td>0.43</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>7</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>12+16</td>
<td>16</td>
<td>17</td>
<td>15</td>
<td>18</td>
<td>22</td>
<td>21</td>
</tr>
<tr>
<td>2004</td>
<td>31,139</td>
<td>0.27</td>
<td>21+22</td>
<td>21</td>
<td>22</td>
<td>Estimate summed from north and south surveys</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>26,535</td>
<td>0.35</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>6,134</td>
<td></td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

Western North Atlantic

Pilot Whale

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.21</td>
<td>0.63</td>
<td>0.47</td>
<td>0.43</td>
<td>0.47</td>
<td>0.89</td>
<td>0.38</td>
<td>0.3</td>
<td>0.8</td>
<td>0.3</td>
<td>Derived from population models (Mercer 1975)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2+7</td>
<td>9</td>
<td>12</td>
<td>11</td>
<td>13</td>
<td>17</td>
<td>18</td>
<td>22</td>
<td>23</td>
<td>Sum of US (#12) and Canadian (#16) surveys</td>
</tr>
</tbody>
</table>

Atlantic white-sided Dolphin

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.21</td>
<td>0.63</td>
<td>0.47</td>
<td>0.43</td>
<td>0.47</td>
<td>0.89</td>
<td>0.38</td>
<td>0.3</td>
<td>0.8</td>
<td>0.3</td>
<td>Derived from population models (Mercer 1975)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2+7</td>
<td>9</td>
<td>12</td>
<td>11</td>
<td>13</td>
<td>17</td>
<td>18</td>
<td>22</td>
<td>23</td>
<td>Sum of US (#12) and Canadian (#16) surveys</td>
</tr>
<tr>
<td>Species</td>
<td>Year</td>
<td>Count</td>
<td>Density</td>
<td>Combined</td>
<td>Average of #18 and #23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------</td>
<td>--------</td>
<td>---------</td>
<td>----------</td>
<td>------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White-beaked Dolphin</td>
<td>2006</td>
<td>63,368</td>
<td>0.27</td>
<td>(18+23)/2</td>
<td>average of #18 and #23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td>5,796</td>
<td>0.43</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1982</td>
<td>573</td>
<td>0.69</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1982</td>
<td>5,500</td>
<td></td>
<td></td>
<td>(Alling and Whitehead 1987)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>2,003</td>
<td>0.94</td>
<td></td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td>1,1842</td>
<td></td>
<td></td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2008</td>
<td>1,218</td>
<td></td>
<td></td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common Dolphin</td>
<td>1982</td>
<td>29,610</td>
<td>0.39</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1991</td>
<td>22,215</td>
<td>0.4</td>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1993</td>
<td>1,645</td>
<td>0.47</td>
<td></td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1995</td>
<td>6,741</td>
<td>0.69</td>
<td></td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1998</td>
<td>30,768</td>
<td>0.32</td>
<td></td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1998</td>
<td>0</td>
<td></td>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2002</td>
<td>6,460</td>
<td>0.74</td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2004</td>
<td>90,547</td>
<td>0.24</td>
<td></td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2004</td>
<td>30,196</td>
<td>0.54</td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2004</td>
<td>120,743</td>
<td>0.23</td>
<td></td>
<td>21+22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>84,000</td>
<td>0.36</td>
<td></td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td>53,625</td>
<td>0.22</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atlantic Spotted Dolphin</td>
<td>1982</td>
<td>6,107</td>
<td>0.27</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1995</td>
<td>4,772</td>
<td>1.27</td>
<td></td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1998</td>
<td>32,043</td>
<td>1.39</td>
<td></td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1998</td>
<td>14,438</td>
<td>0.63</td>
<td></td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2004</td>
<td>3,578</td>
<td>0.48</td>
<td></td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2004</td>
<td>47,400</td>
<td>0.45</td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2004</td>
<td>50,978</td>
<td>0.42</td>
<td></td>
<td>21+22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panropical Spotted Dolphin</td>
<td>1982</td>
<td>6,107</td>
<td>0.27</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1995</td>
<td>4,772</td>
<td>1.27</td>
<td></td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1998</td>
<td>343</td>
<td>1.03</td>
<td></td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1998</td>
<td>12,747</td>
<td>0.56</td>
<td></td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2004</td>
<td>0</td>
<td></td>
<td></td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2004</td>
<td>4,439</td>
<td>0.49</td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2004</td>
<td>4,439</td>
<td>0.49</td>
<td></td>
<td>21+22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Striped Dolphin</td>
<td>1982</td>
<td>36,780</td>
<td>0.27</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1995</td>
<td>31,669</td>
<td>0.73</td>
<td></td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1998</td>
<td>39,720</td>
<td>0.45</td>
<td></td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1998</td>
<td>10,225</td>
<td>0.91</td>
<td></td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2004</td>
<td>52,055</td>
<td>0.57</td>
<td></td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2004</td>
<td>42,407</td>
<td>0.53</td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2004</td>
<td>94,462</td>
<td>0.4</td>
<td></td>
<td>21+22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bottlenose Dolphin</td>
<td>1998</td>
<td>16,689</td>
<td>0.32</td>
<td></td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1998</td>
<td>13,085</td>
<td>0.4</td>
<td></td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2002</td>
<td>26,849</td>
<td>0.19</td>
<td></td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2002</td>
<td>5,100</td>
<td>0.41</td>
<td></td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

288
<table>
<thead>
<tr>
<th>Species</th>
<th>Region</th>
<th>Years</th>
<th>Count</th>
<th>SE</th>
<th>95% CI</th>
<th></th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harbor Porpoise</td>
<td>Gulf of Maine/Bay of Fundy</td>
<td>2001</td>
<td>9,786</td>
<td>0.56</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2004</td>
<td>44,953</td>
<td>0.26</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2004</td>
<td>81,588</td>
<td>0.17</td>
<td>20+21+22</td>
<td>Estimate summed from north and south surveys and 2002 survey</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1991</td>
<td>37,500</td>
<td>0.29</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1992</td>
<td>67,500</td>
<td>0.23</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1995</td>
<td>74,000</td>
<td>0.2</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1995</td>
<td>12,100</td>
<td>0.26</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1996</td>
<td>21,700</td>
<td>0.38</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1999</td>
<td>89,700</td>
<td>0.22</td>
<td>18</td>
<td>survey discovered portions of the range not previously surveyed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2002</td>
<td>64,047</td>
<td>0.48</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2004</td>
<td>51,520</td>
<td>0.65</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2006</td>
<td>89,054</td>
<td>0.47</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2007</td>
<td>4,862</td>
<td>0.31</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harbor Seal</td>
<td>Western North Atlantic</td>
<td>2001</td>
<td>99,340</td>
<td>0.097</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gray Seal</td>
<td>Western North Atlantic</td>
<td>1999</td>
<td>5,611</td>
<td></td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2001</td>
<td>1,731</td>
<td></td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2004</td>
<td>52,500</td>
<td>0.15</td>
<td>37</td>
<td>Gulf of St Lawrence and Nova Scotia Eastern Shore</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2004</td>
<td>208,720</td>
<td>0.14</td>
<td>36</td>
<td>Sable Island</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bryde’s Whale</td>
<td>Northern Gulf of Mexico</td>
<td>1991-1994</td>
<td>35</td>
<td>1.10</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1996-2001</td>
<td>40</td>
<td>0.61</td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2003-2004</td>
<td>15</td>
<td>1.98</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sperm Whale</td>
<td>Northern Gulf of Mexico</td>
<td>1991-1994</td>
<td>530</td>
<td>0.31</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1996-2001</td>
<td>1,349</td>
<td>0.23</td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2003-2004</td>
<td>1,665</td>
<td>0.20</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kogia spp.</td>
<td>Northern Gulf of Mexico</td>
<td>1991-1994</td>
<td>547</td>
<td>0.28</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1996-2001</td>
<td>742</td>
<td>0.29</td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2003-2004</td>
<td>453</td>
<td>0.35</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuvier’s Beaked Whale</td>
<td>Northern Gulf of Mexico</td>
<td>1991-1994</td>
<td>30</td>
<td>0.50</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1996-2001</td>
<td>95</td>
<td>0.47</td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2003-2004</td>
<td>65</td>
<td>0.67</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesoplodon spp.</td>
<td>Northern Gulf of Mexico</td>
<td>1996-2001</td>
<td>106</td>
<td>0.41</td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2003-2004</td>
<td>57</td>
<td>1.40</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Killer Whale</td>
<td>Northern Gulf of Mexico</td>
<td>1991-1994</td>
<td>277</td>
<td>0.42</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1996-2001</td>
<td>133</td>
<td>0.49</td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2003-2004</td>
<td>49</td>
<td>0.77</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>False killer Whale</td>
<td>Northern Gulf of Mexico</td>
<td>1991-1994</td>
<td>381</td>
<td>0.62</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1996-2001</td>
<td>1,038</td>
<td>0.71</td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2003-2004</td>
<td>777</td>
<td>0.56</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short-finned Pilot Whale</td>
<td>Northern Gulf of Mexico</td>
<td>1991-1994</td>
<td>353</td>
<td>0.89</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1996-2001</td>
<td>2,388</td>
<td>0.48</td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2003-2004</td>
<td>716</td>
<td>0.34</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melon-headed</td>
<td>Northern</td>
<td>1991-1994</td>
<td>3,965</td>
<td>0.39</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whale</td>
<td>Gulf of Mexico</td>
<td>1996-2001</td>
<td>2003-2004</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------</td>
<td>-----------</td>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whale</td>
<td></td>
<td>3,451</td>
<td>2,283</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pygmy Killer Whale</td>
<td>Northern Gulf of Mexico</td>
<td>518</td>
<td>2,749</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.81</td>
<td>0.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>408</td>
<td>2,169</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.60</td>
<td>0.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>33</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>323</td>
<td>1,589</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.60</td>
<td>0.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>35</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risso’s Dolphin</td>
<td>Northern Gulf of Mexico</td>
<td>31,320</td>
<td>91,321</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.20</td>
<td>0.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>34,067</td>
<td>1,989</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.18</td>
<td>0.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>35</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Northern Gulf of Mexico</td>
<td>4,858</td>
<td>6,505</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.44</td>
<td>0.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3,325</td>
<td>1,989</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.48</td>
<td>0.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>35</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pan tropical Spotted Dolphin</td>
<td>Northern Gulf of Mexico</td>
<td>6,316</td>
<td>11,971</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.43</td>
<td>0.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,989</td>
<td>1,989</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.48</td>
<td>0.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>35</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Northern Gulf of Mexico</td>
<td>5,571</td>
<td>17,355</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.37</td>
<td>0.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6,575</td>
<td>6,575</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.36</td>
<td>0.36</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>35</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clymene Dolphin</td>
<td>Northern Gulf of Mexico</td>
<td>3,213</td>
<td>175</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.44</td>
<td>0.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>37,611</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.28</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>34</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atlantic Spotted Dolphin</td>
<td>Northern Gulf of Mexico</td>
<td>127</td>
<td>726</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.90</td>
<td>0.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Current best population size estimate is unknown.</td>
<td>Current best population size estimate is unknown.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fraser’s Dolphin</td>
<td>Northern Gulf of Mexico</td>
<td>852</td>
<td>985</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.31</td>
<td>0.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,145</td>
<td>1,508</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.83</td>
<td>0.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>34</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rough-toothed Dolphin</td>
<td>Northern Gulf of Mexico</td>
<td>2,239</td>
<td>17,777</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.41</td>
<td>0.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>33</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3,708</td>
<td>3,708</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.42</td>
<td>0.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>35</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bottlenose Dolphin</td>
<td>Northern Gulf of Mexico</td>
<td>17,777</td>
<td>17,777</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.32</td>
<td>0.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>34</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bottlenose Dolphin</td>
<td>Northern Gulf of Mexico Continental Shelf</td>
<td>9,912</td>
<td>4,191</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.12</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1994</td>
<td>1993</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bottlenose Dolphin</td>
<td>Northern Gulf of Mexico Coastal (3)</td>
<td>9,912</td>
<td>4,191</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.12</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1994</td>
<td>1993</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bottlenose Dolphin stocks)</td>
<td>Western 1992</td>
<td>3,499</td>
<td>0.21</td>
<td>31</td>
<td>Current best population size estimate for each of these 3 stocks is unknown because data are more than 8 years old.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------</td>
<td>-------</td>
<td>------</td>
<td>----</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northern Gulf of Mexico Bay, Sound and Estuarine (32 stocks)</td>
<td>St. Joseph Bay, 2005-2006</td>
<td>81</td>
<td>0.14</td>
<td>(Balmer et al. 2008)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>St. Vincent Sound, Apalachicola Bay, St. George Sound, 2008</td>
<td>537</td>
<td>0.09</td>
<td>(Tyson 2008)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remaining 30 stocks</td>
<td>unknown</td>
<td>undetermined</td>
<td>31</td>
<td>Current best population size estimate for each of these 30 stocks is unknown because data are more than 8 years old.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REFERENCES CITED

APPENDIX V: Reports not updated in 2011

(All reports available online at http://www.nefsc.noaa.gov/publications/tm/tm219/)

<table>
<thead>
<tr>
<th>Species Description</th>
<th>Stock Name</th>
<th>Year Updated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue Whale (Balaenoptera musculus)</td>
<td>Western North Atlantic Stock</td>
<td>2010</td>
</tr>
<tr>
<td>Sperm Whale (Physeter macrocephalus)</td>
<td>North Atlantic Stock</td>
<td>2007</td>
</tr>
<tr>
<td>Dwarf Sperm Whale: (Kogia sima)</td>
<td>Western North Atlantic Stock</td>
<td>2007</td>
</tr>
<tr>
<td>Pygmy Sperm Whale (Kogia breviceps)</td>
<td>Western North Atlantic Stock</td>
<td>2007</td>
</tr>
<tr>
<td>Killer Whale (Orcinus orca)</td>
<td>Western North Atlantic Stock</td>
<td>1995</td>
</tr>
<tr>
<td>Pygmy Killer Whale (Feresa attenuata)</td>
<td>Western North Atlantic Stock</td>
<td>2007</td>
</tr>
<tr>
<td>Northern Bottlenose Whale (Hyperoodon ampullatus)</td>
<td>Western North Atlantic Stock</td>
<td>2008</td>
</tr>
<tr>
<td>Cuvier's Beaked Whale (Ziphius cavirostris)</td>
<td>Western North Atlantic Stock</td>
<td>2009</td>
</tr>
<tr>
<td>Blainville’s Beaked Whale (Mesoplodon densirostris)</td>
<td>Western North Atlantic Stock</td>
<td>2009</td>
</tr>
<tr>
<td>Gervais’ Beaked Whale (Mesoplodon europaeus)</td>
<td>Western North Atlantic Stock</td>
<td>2009</td>
</tr>
<tr>
<td>Sowerby’s Beaked Whale (Mesoplodon bidens)</td>
<td>Western North Atlantic Stock</td>
<td>2009</td>
</tr>
<tr>
<td>True’s Beaked Whale (Mesoplodon mirus)</td>
<td>Western North Atlantic Stock</td>
<td>2009</td>
</tr>
<tr>
<td>Melon-Headed Whale (Peponocephala electra)</td>
<td>Western North Atlantic Stock</td>
<td>2007</td>
</tr>
<tr>
<td>White-Beaked Dolphin (Lagenorhynchus albirostris)</td>
<td>Western North Atlantic Stock</td>
<td>2007</td>
</tr>
<tr>
<td>Atlantic Spotted Dolphin (Stenella frontalis)</td>
<td>Western North Atlantic Stock</td>
<td>2007</td>
</tr>
<tr>
<td>Pantropical Spotted Dolphin (Stenella attenuata)</td>
<td>Western North Atlantic Stock</td>
<td>2007</td>
</tr>
<tr>
<td>Striped Dolphin (Stenella coeruleoalba)</td>
<td>Western North Atlantic Stock</td>
<td>2007</td>
</tr>
<tr>
<td>Fraser's Dolphin (Lagenodelphis hosei)</td>
<td>Western North Atlantic Stock</td>
<td>2007</td>
</tr>
<tr>
<td>Rough-Toothed Dolphin (Steno bredanensis)</td>
<td>Western North Atlantic Stock</td>
<td>2008</td>
</tr>
<tr>
<td>Clymene Dolphin (Stenella clymene)</td>
<td>Western North Atlantic Stock</td>
<td>2007</td>
</tr>
<tr>
<td>Spinner Dolphin: (Stenella longirostris)</td>
<td>Western North Atlantic Stock</td>
<td>2007</td>
</tr>
<tr>
<td>Bottlenose Dolphin (Tursiops truncatus truncatus)</td>
<td>Western North Atlantic Offshore Stock</td>
<td>2010</td>
</tr>
<tr>
<td>Bottlenose Dolphin (Tursiops truncatus truncatus): Western North Atlantic Northern Migratory Coastal Stock</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bottlenose Dolphin (Tursiops truncatus truncatus): Western North Atlantic Southern Migratory Coastal Stock</td>
<td>2010</td>
<td></td>
</tr>
<tr>
<td>Bottlenose Dolphin (Tursiops truncatus truncatus): Western North Atlantic South Carolina/Georgia Coastal Stock</td>
<td>2010</td>
<td></td>
</tr>
<tr>
<td>Bottlenose Dolphin (Tursiops truncatus truncatus): Western North Atlantic Northern Florida Coastal Stock</td>
<td>2010</td>
<td></td>
</tr>
<tr>
<td>Bottlenose Dolphin (Tursiops truncatus truncatus): Western North Atlantic Central Florida Coastal Stock</td>
<td>2010</td>
<td></td>
</tr>
<tr>
<td>Bottlenose Dolphin (Tursiops truncatus truncatus): Northern North Carolina Estuarine System Stock</td>
<td>2010</td>
<td></td>
</tr>
<tr>
<td>Bottlenose Dolphin (Tursiops truncatus truncatus): Southern North Carolina Estuarine System Stock</td>
<td>2010</td>
<td></td>
</tr>
<tr>
<td>Bottlenose Dolphin (Tursiops truncatus truncatus): Charleston Estuarine System Stock</td>
<td>2009</td>
<td></td>
</tr>
<tr>
<td>Bottlenose Dolphin (Tursiops truncatus truncatus): Northern Georgia/Southern South Carolina Estuarine System Stock</td>
<td>2009</td>
<td></td>
</tr>
</tbody>
</table>
Bottlenose Dolphin (*Tursiops truncatus truncatus*): Southern Georgia Estuarine System Stock 2009
Bottlenose Dolphin (*Tursiops truncatus truncatus*): Jacksonville Estuarine System Stock 2009
Bottlenose Dolphin (*Tursiops truncatus truncatus*): Indian River Lagoon Estuarine System Stock 2009
Bottlenose Dolphin (*Tursiops truncatus truncatus*): Biscayne Bay Stock 2009
Bottlenose Dolphin (*Tursiops truncatus truncatus*): Florida Bay Stock 2009
Hooded Seal (*Cystophora cristata*): Western North Atlantic Stock 2007
Sperm Whale (*Physeter macrocephalus*): Northern Gulf of Mexico Stock 2010
Cuvier’s Beaked Whale (*Ziphius cavirostris*): Northern Gulf of Mexico Stock 2009
Blainville’s Beaked Whale (*Mesoplodon densirostris*): Northern Gulf of Mexico Stock 2009
Gervais' Beaked Whale (*Mesoplodon europaeus*): Northern Gulf of Mexico Stock 2009
Bottlenose Dolphin (*Tursiops truncatus truncatus*): Northern Gulf of Mexico Continental Shelf Stock 2009
Bottlenose dolphin (*Tursiops truncatus truncatus*): Gulf of Mexico Eastern Coastal Stock 2010
Bottlenose Dolphin (*Tursiops truncatus truncatus*): Gulf of Mexico Northern Coastal Stock 2010
Bottlenose Dolphin (*Tursiops truncatus truncatus*): Gulf of Mexico Western Coastal Stock 2010
Atlantic Spotted Dolphin (*Stenella frontalis*): Northern Gulf of Mexico Stock 2009
Striped Dolphin (*Stenella coeruleoalba*): Northern Gulf of Mexico Stock 2009
Spinner Dolphin (*Stenella longirostris*): Northern Gulf of Mexico Stock 2009
Rough-Toothed Dolphin (*Steno bredanensis*): Northern Gulf of Mexico Stock 2009
Clymene Dolphin (*Stenella clymene*): Northern Gulf of Mexico Stock 2009
Fraser's Dolphin (*Lagenodelphis hosei*): Northern Gulf of Mexico Stock 2009
Killer Whale (*Orcinus Orca*): Northern Gulf of Mexico Stock 2010
False Killer Whale (*Pseudorca crassidens*): Northern Gulf of Mexico Stock 2009
Pygmy Killer Whale (*Feresa attenuata*): Northern Gulf of Mexico Stock 2009
Dwarf Sperm Whale (*Kogia sima*): Northern Gulf of Mexico Stock 2009
Pygmy Sperm Whale (*Kogia breviceps*): Northern Gulf of Mexico Stock 2009
Melon-Headed Whale (*Peponocephala electra*): Northern Gulf of Mexico Stock 2009
Risso's Dolphin (*Grampus griseus*): Northern Gulf of Mexico Stock 2010
Short-Finned Pilot Whale (*Globicephala macrorhynchus*): Northern Gulf of Mexico Stock 2009
Sperm Whale (*Physeter macrocephalus*): Puerto Rico and U.S. Virgin Islands Stock 2010
APPENDIX VI: West Indian Manatee Stock Assessments – Florida and Antilles stocks

Revised: 11/2009

WEST INDIAN MANATEE (*Trichechus manatus*)

FLORIDA STOCK

(Florida subspecies, *Trichechus manatus latirostris*)

U.S. Fish and Wildlife Service, Jacksonville, Florida

STOCK DEFINITION AND GEOGRAPHIC RANGE

Florida manatees are found throughout the southeastern United States. Because manatees are a sub-tropical species with little tolerance for cold, they are generally restricted to the inland and coastal waters of peninsular Florida during the winter, when they shelter in and/or near warm-water springs, industrial effluents, and other warm water sites (Hartman 1979, Lefebvre et al. 2001, Stith et al. 2007). In warmer months, manatees leave these sites and can disperse great distances. Individuals have been sighted as far north as Massachusetts, as far west as Texas, and in all states in between (Rathbun et al. 1982, Schwartz 1995, Fertl et al. 2005, USFWS Jacksonville Field Office, unpubl. data 2008a). Warm weather sightings are most common in Florida and coastal Georgia.

Previous studies of the manatee in Florida identified four, relatively distinct, regional management units (formerly referred to as subpopulations): an Atlantic Coast unit that occupies the east coast of Florida, including the Florida Keys and the lower St. Johns River north of Palatka; an Upper St. Johns River unit that occurs in the river south of Palatka; a Northwest unit that occupies the Florida Panhandle south to Hernando County; and a Southwest unit that occurs from Pasco County south to Whitewater Bay in Monroe County (USFWS 2001 and 2007). See Figure 1. Each of these management units includes individual manatees that tend to return to the same warm-water site(s) each winter and have similar non-winter distribution patterns. The exchange of individuals between these units is limited during the winter months, based on data from telemetry studies (Rathbun et al. 1990, Reid et al. 1991, Weigle et al. 2001, Deutsch et al. 1998 and 2003) and photo-identification studies (Rathbun et al. 1990, USGS FISC Sirenia Project, unpubl. data 2007, Higgs, pers. comm. 2007a, b).

While the Florida manatee population has been separated into management units, the Service identifies the Florida manatee population as a single stock. As stated, the management unit construct was originally based on studies of regional manatee wintering sites. The management units are a useful construct for assessing unit-specific population trends and threats; the Service and its collaborators evaluate these parameters for each unit using a core biological model (CBM) developed by Runge et al. (2004). Consistent with requirements of the Endangered Species Act of 1973, as amended, threats are then appropriately addressed through methods identified in Service recovery plans (and the State of Florida’s Manatee Management Plan). This approach has been successful for efforts to manage Florida manatees and the Service believes that using SARs for each of the management units would provide little added benefit to existing efforts.

Significant genetic differences between the manatees of Florida and Puerto Rico do exist and, as a result, these populations are identified as separate stocks (Vianna et al. 2006). Vianna et al. (2006) identified a gene flow barrier between Florida and Puerto Rico using mtDNA analyses.

POPULATION SIZE

One to three times each winter, a coordinated series of statewide aerial surveys and ground counts, known as the synoptic surveys, are conducted by the Florida Fish and Wildlife Conservation Commission (FWC) to count wintering manatees (FWC FWRI Manatee Synoptic Aerial Surveys 2009). These counts, conducted since 1991, identify a number of animals observed in wintering sites at the time of the count and suggest that there is at least this number of manatees in the population, if not more. Because the counts do not include the number of manatees located away from the wintering sites on the day of the count, the counts do not accurately represent the total number of manatees in the population. Weather and other environmental factors influence count conditions, adding
additional variability. Furthermore, survey methods preclude any analysis of precision and variability in the counts. In the absence of a comprehensive count, these counts cannot be used to describe population trends. Information based on Florida manatee population demographic data obtained from photo-identification studies is used to accurately describe population trends as they relate to growth rates, adult survival rates, and reproductive rates. Management decisions are based on these more accurate, scientifically supportable numbers and trends.

Minimum Population Estimate

The best available count of Florida manatees is 3,802 animals, based on a single synoptic survey of warm-water refuges in January 2009 (FWC FWRI Manatee Synoptic Aerial Surveys 2009).

Current Population Trends

Recent demographic analyses indicate that, with the exception of the Southwest management unit, manatee populations are increasing or stable throughout much of Florida. See Table 1. The analyses are based on photo-ID based mark-recapture analyses using a manatee-specific core biological model. Population growth rates reported by Runge et al. (2004 and 2007a) are as follows: the Northwest Region 4.0% (95% CI 2.0 to 6.0%), the Upper St. Johns River Region 6.2% (95% CI 3.7 to 8.1%), the Atlantic Coast Region 3.7% (95% CI 1.1 to 5.9%), and the Southwest Region -1.1% (95% CI -5.4 to +2.4%). In three of the four management units, reproductive rates and adult survival rates are cited as positive (Runge et al. 2007a, Kendall et al. 2004, Langtimm et al. 2004, and Koelsch 2001). In southwest Florida, estimates of adult survival and reproduction are less precise than for manatees in other regions of Florida because the data time series is comparatively shorter for this unit and no demographic data is available for manatees in the southernmost part of this region. Craig and Reynolds (2004) additionally suggested that populations of wintering manatees in the Atlantic Coast Region have been increasing at rates of between 4 and 6% per year since 1994. Growth rates for each management unit are current through 2000.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

The Marine Mammal Protection Act defines net productivity rate as “the annual per capita rate of increase in a stock resulting from additions due to reproduction, less losses due to natural mortality.” Recently published information on Florida manatee population demographics include studies by Runge et al. (2004 and 2007a), Craig and Reynolds (2004), Kendall et al. (2004), and Langtimm et al. (2004). Per Runge et al. (2004), the maximum growth rate for Florida manatees (incorporating reproductive and adult survival rates), is 6.2% (95%, CI 3.7 to 8.1%). This rate, reported for the Upper St. Johns River management unit, is identified as R_{max} inasmuch as it describes a maximum rate of increase and reflects both additions and losses to this population, including losses due to both natural and human-causes.

POTENTIAL BIOLOGICAL REMOVAL (PBR)

PBR is the product of three elements: the minimum population estimate (N_{min}), half of the maximum net productivity rate (0.5 R_{max}), and a recovery factor (F_r). Recovery factor values range between 0.1 and 1.0 and population simulation studies demonstrate that a default value of 0.1 should be used for endangered (depleted) stocks and a default value of 0.5 should be used for threatened stocks or stocks of unknown status (NMFS 2005).

\[N_{min} = 3,802 \]
\[R_{max} = 6.2\% \]
\[F_r = 0.1 \]

\[\text{PBR} = (3,802) (0.031) (0.1) = 11.80 \text{ (or 12)} \]

HUMAN CAUSED MORTALITY AND SERIOUS INJURY

Sources of human caused manatee mortality and injury include watercraft, water control structures, recreational and commercial fishing gear, and others. These sources were identified and are documented through manatee
carcass salvage and rescue programs (FWC FWRI Manatee Mortality Statistics 2008, USFWS Jacksonville Field Office, unpub. data 2008b and 2008c, Rommel et al. 2007, Lightsey et al. 2006, Pitchford et al. 2005, Wright et al. 1995, Ackerman et al. 1995, O’Shea et al. 1985, Bonde et al. 1983). The Service elected to use data describing the 2003 through 2007 period inasmuch as this data had been verified for completeness and accuracy. (Verifications of the 2008 injury and mortality datasets were incomplete at the time of writing.)

From 1978 through 2007, 6,373 manatee carcasses were salvaged in the southeastern United States. Of these carcasses, 1,877 were of animals that died from human causes. Eighty-two percent of manatees (1,538) that died from human causes were killed by watercraft. Water control structures (including flood gates and navigation locks) killed 182 manatees and the deaths of the remaining 157 manatees were attributed to other human causes (including entanglement in and ingestion of marine debris [including fishing gear], entrapment in pipes and culverts, etc.) (FWC FWRI Manatee Mortality Statistics 2008, USFWS Jacksonville Field Office, unpub. data, 2008c). For the period 2003 – 2007, annual estimated average human-caused mortality was 86.6 or 87 manatees per year (FWC FWRI Manatee Mortality Statistics 2008).

While “serious injury” has been described by the National Marine Fisheries Service “as any injury that will likely result in mortality” (NMFS 2005), the Service has not defined “serious injury.” Absent a definition, the Service receives reports of distressed or injured manatees that may or may not meet the NMFS definition of “serious injury” and responds to these reports through a manatee rescue, rehabilitation, and release program. Responses to reports of distressed or injured manatees can include assisting a superficially injured manatee in situ or may involve transporting a more than superficially injured animal to a rehabilitation center for further treatment. It is assumed that animals treated in situ have not been seriously injured.

Human-caused Mortality

Data on manatee mortality in the southeastern United States have been collected since 1974 by the Manatee Carcass Salvage Program (O’Shea et al. 1985, Ackerman et al. 1995, Lightsey et al. 2006). Based on these data, primary human-related threats include watercraft-related strikes (direct impact and/or propeller) which cause injury and death (Rommel et al. 2007, Lightsey et al. 2006), entrapment and/or crushing in water control structures (gates, locks, etc.), and, as previously described, entanglement in fishing gear, and ingestion of marine debris. Natural threats include exposure to cold and red tide. Mortality associated with these natural threats includes cold stress syndrome and brevetoxinosis, respectively.

Causes of death for many salvaged carcasses cannot be determined. These “undetermined” causes can be the result of a carcass that is too decomposed to diagnose, a carcass that was reported but never retrieved, or when no specific factor or set of factors can be identified as a cause of death. In addition, small manatees (less than or equal to 150 cm in length) that die at or near the time of birth and whose deaths cannot be attributed to one of the known human-related causes are described as “perinatal” deaths, an undetermined cause.

During the most recent five year period for which data have been verified (2003 – 2007), 1,805 manatee carcasses were salvaged in the southeastern United States. See Table 2. Of these carcasses, 433 were of animals that died from human causes. Based on this, the annual estimated average human-caused mortality is 87 (86.6) manatees per year. Eighty-nine percent of manatees (386) that died from human causes were killed by watercraft. Water control structures (including flood gates and navigation locks) killed 18 manatees and the deaths of the remaining 29 manatees were attributed to other human causes (including entanglement in and ingestion of marine debris [including fishing gear], entrapment in pipes and culverts, etc.) (FWC FWRI Manatee Mortality Statistics 2008).

Fisheries-related Mortality and Injury

Manatees are known to entangle in and/or ingest fishing gear used by both commercial and recreational fisheries. As reported in death and rescue reports, fishing gear used by commercial fishers known to entangle or be ingested by manatees includes shrimp trawls, shrimp nets, crab traps (traps and/or associated buoys and lines), seines, shiner nets and hoop nets, and trot lines. Similarly, recreational fishery gear known to either entangle or be ingested by manatees includes monofilament fishing line and/or associated tackle, cast nets, and crab traps. Manatees also become entangled in ropes and lines, possibly related to recreational and commercial fisheries (e.g., float lines detached from traps, etc.) (FWC FWRI Manatee Mortality Statistics 2008, USFWS Jacksonville Field Office, unpub. data 2008b and 2008c, Smith 1998, Nill 1998). Manatees are struck and killed or injured by a variety of watercraft, including watercraft of a size and type comparable to those used by commercial and recreational fishers (Rommel et al. 2007, Lightsey et al. 2006, Pitchford et al. 2005).
Mortalities

For the most recent five year period (2003 - 2007), at least 10 manatees died due to entanglements in/ingestion of marine debris; six of these deaths were associated with fishing line and/or associated gear, two deaths were attributed to research nets, and two to other sources (FWC FWRI Manatee Mortality Statistics 2008, USFWS Jacksonville Field Office, unpub. data 2008b, Nill 1998, Smith 1998). See Table 3. There were no known sources of commercial fishery gear implicated in these deaths.

Injuries

The Service’s manatee rescue, rehabilitation, and release program has rescued injured or distressed manatees since 1973. From 2003 to 2007, there were 80 rescues associated with fishing gear and other sources of marine debris. Thirty-five of these were related to crab trap entanglements, 15 to fishing line and/or associated gear, and 5 were due to net entanglements. Nine of the 35 crab trap-related rescues required treatment at rehabilitation centers and the remaining 26 were resolved in the field (USFWS Jacksonville Field Office, unpub. data 2008b). See Table 4. Crab trap-related rescues likely involve gear from both commercial and recreational fishers, who use the same type of gear.

Commercial Fishing Gear-related Interactions

The majority of known fishing gear interactions have occurred in Florida waters (280 of 290 known deaths and rescues, including interactions that occurred before 1978). Prior to 1995, when the State of Florida adopted a statewide, in-shore net ban, manatees were known to entangle in a variety of fishing gear used by commercial fishers, including blue crab fishery gear. Subsequent to 1995, entanglements in non-blue crab fishery gear used by commercial fishers are virtually unknown, both in the State of Florida and elsewhere (there is a single record of a manatee being rescued from commercial fishing gear in 1997 in Georgia, when a manatee was rescued from an inshore bait shrimp trawl) (FWC FWRI Manatee Mortality Statistics 2008, USFWS Jacksonville Field Office, unpub. data 2008b and 2008c, Nill 1998, Smith 1998). However, blue crab fishery gear entanglements continue in Florida. From 2003 to 2007, no manatee deaths and 35 rescues are attributable to the blue crab fisheries.

Given greater fishing effort by commercial blue crab fishers in contrast to blue crab fishing efforts by recreational fishers (which suggests more commercial fishing gear in the water than recreational gear in the water), it’s thought that a majority of manatee entanglements in blue crab fishing gear should be attributed to the commercial blue crab fisheries. In the past, efforts to distinguish between animals entangled in commercial blue crab trap gear versus recreational blue crab trap gear were hindered by a lack of gear data collection protocols for rescuers and salvagers and state gear identification requirements were not necessarily adequate to identify gear ownership. Protocols have subsequently been modified, as have state regulations requiring better identification of gear owners, and the attribution of entangling gear to its source has significantly improved.

Two commercial blue crab fisheries identified in NMFS’ “2009 List of Fisheries” (73 FR 73032; December 1, 2008) known to entangle Florida manatees include:

Atlantic blue crab trap/pot fishery

The Category II Atlantic blue crab trap/pot fishery targets blue crabs using pots baited with fish or poultry typically set in rows in shallow water. The pot position is marked by either a floating or sinking buoy line attached to a surface buoy. The fishery occurs year round and involves more than 16,000 vessels/persons. Twenty-seven percent of Florida’s 2006 blue crab landings came from Florida’s Atlantic Coast Region, within the operational area of the Atlantic blue crab trap/pot fishery (FWC FWRI 2007).

Gulf of Mexico blue crab trap/pot fishery

The Category III Gulf of Mexico blue crab trap/pot fishery targets blue crabs using pots baited with fish or poultry typically set in rows in shallow water. The pot position is marked by either a floating or sinking buoy line attached to a surface buoy. The fishery occurs year round and involves more than 4,113 vessels/persons. Seventy-three percent of Florida’s 2006 blue crab landings came from Florida’s Gulf
Coast Region, within the operational area of the Gulf of Mexico blue crab trap/pot fishery (FWC FWRI 2007).

Fifty-five percent of known Florida manatee-crab fishery interactions occurring between 2003 and 2007 were documented within the area of the Gulf of Mexico blue crab trap/pot fishery. The majority of these interactions occurred in southwest Florida, with most occurring in Lee County (seven rescues occurred in this county alone) (FWC FWRI Manatee Mortality Statistics 2008, USFWS Jacksonville Field Office, unpub. data 2008b). Within the area of the Atlantic blue crab trap/pot fishery, most interactions occurred in east central Florida (Brevard County) (FWC FWRI Manatee Mortality Statistics 2008, USFWS Jacksonville Field Office, unpub. data 2008b).

The NMFS’ “2009 List of Fisheries” (73 FR 73032; December 1, 2008) also identifies the Category III “Southeastern U.S. Atlantic/Gulf of Mexico shrimp trawl fishery” as a fishery known to take Florida manatees.

Southeastern U.S. Atlantic/Gulf of Mexico shrimp trawl fishery

The Category III Southeastern U.S. Atlantic/Gulf of Mexico shrimp trawl fishery targets a variety of pelagic shrimp species (brown, pink, white, rock, etc.) by means of a large trawl net towed behind a single trawl trawler. Nets, held open by paired doors, are towed on coastal bottoms for varying lengths of time. This fishery occurs year round and involves more than 18,000 vessels/persons. Shrimp trawling occurs along Florida’s Atlantic and Gulf coasts, well outside of Florida shoreline areas regulated pursuant to Florida net ban regulations.

From 2003 to 2007, no manatee deaths or injuries attributable to this fishery have been reported from the Atlantic and Gulf coasts in the southeastern U.S. Furthermore, this commercial fishery is not known to have taken any manatees since 1987, when the last confirmed report of a manatee captured and drowned in this fishery was recorded. (Three unconfirmed deaths were documented in 1990. Necropsy findings and/or circumstances associated with these cases suggested that an inshore bait shrimp fishery may have been responsible for the deaths but definitive information was lacking. A manatee that died in a shrimp trawl in 1997 was captured by a research trawler investigating excluder devices; the researchers used a shrimp trawl, identical to those used by commercial fishers, but they were not engaged in commercial fishing operations.)

STATUS OF STOCK

The Florida manatee is protected by the State of Florida under the Florida Manatee Sanctuary Act of 1978, as amended (§ 379.2431(2), FS). Federally, Florida manatees were originally listed as an endangered species in 1967 under the Endangered Species Preservation Act of 1966. The original listing was subsequently adopted under the Endangered Species Act of 1973 (16 U.S.C. 1531 et seq.), as amended, and manatees continue to be identified as a federally endangered species. As an endangered species, manatees are considered by default to be a “strategic stock” and “depleted” under the Marine Mammal Protection Act of 1972, as amended (16 U.S.C. 1361 et seq.).

The recent threats assessment (Runge et al 2007b) states that “watercraft-related mortality is having the greatest impact on manatee population growth and resiliency” and “elimination of this threat alone would greatly reduce the probability of quasi-extinction. Anticipated losses of winter warm-water habitat could also be a significant, long-term threat.” The threats assessment describes mortality associated with fisheries interactions and red tides as “noticeable” and, when compared to other anthropogenic threats, is thought to have less of an impact on the persistence of the manatee population (Runge et al 2007b).

The Service and its recovery partners have taken significant steps to reduce the number of human caused manatee mortalities and injuries. To address the threat of watercraft collisions, the most significant source of human-caused mortality and injury, the Service and FWC have adopted manatee protection areas (Federal manatee refuges and sanctuaries and State manatee protection zones) in areas of high manatee use and potential watercraft conflict. Water control structures have been retrofitted with devices that eliminate crushings and many culverts and pipes have been grated to prevent manatee entrapment.

Efforts have also been made to reduce the incidence of lethal and non-lethal entanglements in and ingestion of marine debris, including fishing gear (Spellman et al., 2003 and 1999). Manatees entangled in or ingesting marine debris are rescued each year by the manatee rescue and rehabilitation program; manatee mortalities and serious
injuries are minimized as a result of this activity (FWC FWRI Manatee Mortality Statistics 2008, USFWS Jacksonville Field Office, unpub. data 2008b and 2008c, Nill 1998, Smith 1998). The Service has funded studies to assess manatee behavior in the presence of fishing gear and to identify “manatee-safe” crab fishing gear that, if used, will minimize the number of manatee-crab trap entanglements (Bowles et al. 2003 and Bowles 2000). Derelict crab trap removals and monofilament removal and recycling programs are helping to reduce the likelihood of manatee interactions with this gear (Koelsch et al. 2003). In February 2009, FWC adopted regional blue crab harvest closures across the state; derelict crab traps are removed during the closures, further reducing the likelihood of crab trap gear entanglements (FWC 2009).

While the threats posed by watercraft and the anticipated loss of wintering habitat on the Florida manatee are significant, the threat posed by commercial fishery activities is very small and has a comparatively lesser impact on the persistence of the Florida manatee population. The number of lethal and live takes of manatees in blue crab trap/pot fishery gear during the past year (no lethal takes and nine live takings) is well below the calculated PBR level of 12 takings. Over the past five years, there have been no lethal takings of manatees in the blue crab fishery and a total of 35 non-lethal takings of crab fishery gear-entangled manatees (rescued by the manatee rescue and rehabilitation program), an average of 6.8 takes per year. Similarly, there are no known lethal or non-lethal takes of manatees in the shrimp trawl fishery for this period. Therefore, the annual estimated level of incidental mortality and serious injury due to the shrimp trawl fishery is zero. Given the largely non-lethal effect of these takings, total commercial fishery mortality and serious injury for this stock is less than the calculated PBR and, therefore, can be considered insignificant and approaching a zero mortality and serious injury rate.

Inasmuch as an optimal sustainable population (OSP) level has not been identified for the Florida manatee, we do not know what this stock’s status is in relation to OSP. In the face of existing threats, “the Florida manatee population is exhibiting positive growth, good reproductive rates, and high adult survival throughout most of the state” (USFWS 2007).

300
REFERENCES CITED

Hartley, W.C. 2006. FDEP Blue Springs State Park. Personal communication to Dawn Jennings, USFWS.

Figure 1. Florida manatee distribution within the four designated regional management units. USFWS (2001).
Table 1. Demographic indicators for Florida manatees by management unit.

<table>
<thead>
<tr>
<th>Management Unit</th>
<th>Population Growth Rate (per year)</th>
<th>Minimum Population Size</th>
<th>Annual Conditional Reproductive Rate</th>
<th>Adult Survival Rates</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northwest</td>
<td>4.0% (95% CI 2.0 to 6.0%) 1986 – 2000 (Runge et al. 2007a)</td>
<td>377 (FWC Manatee Synoptic Aerial Surveys 2009)</td>
<td>0.43 (95% CI 0.22 – 0.54) 1982 – 1999 (Kendall et al. 2004)</td>
<td>0.959 SE 0.006 1986 – 2000 (Runge et al. 2007a)</td>
<td>The number of manatees throughout the region, including Crystal River and Kings Bay, has been increasing since the 1960s. A recent high count of 274 manatees was documented in 2005 (Kleen, pers. comm. 2006).</td>
</tr>
<tr>
<td>Upper St. Johns River</td>
<td>6.2% (95% CI 3.7 to 8.1%) 1990 – 1999 (Runge et al. 2004)</td>
<td>112 (FWC Manatee Synoptic Aerial Surveys 2009)</td>
<td>0.61 (95% CI 0.51 – 0.71) 1980 – 2000 (Runge et al. 2004)</td>
<td>0.960 SE 0.011 1990 – 1999 (Langtimm et al. 2004)</td>
<td>The number of manatees using Blue Spring has increased significantly. A recent high count of manatees (182) was documented during the 2005 – 2006 winter season (Hartley, pers. comm. 2006). At this site, survival of 1st year calves was estimated at 0.810 (0.727 – 0.873) and 2nd year calves at 0.915 (0.827-0.960) (Langtimm et al. 2004).</td>
</tr>
<tr>
<td>Atlantic Coast</td>
<td>3.7% (95% CI 1.1 to 5.9%) 1986 – 2000 (Runge et al. 2007a)</td>
<td>1447 (FWC Manatee Synoptic Aerial Surveys 2009)</td>
<td>0.38 (95% CI 0.29 – 0.47) 1982 – 1999 (Kendall et al. 2004)</td>
<td>0.963 SE 0.010 1986 – 2000 (Runge et al. 2007a)</td>
<td>In contrast to FWC’s estimate, Craig and Reynolds (2004) estimated the population size of animals using Atlantic Coast power plants in 2001 at 1606 (Bayesian credible interval: 1353 – 172) They also identified trends in corrected aerial counts: 1982-1989, 5 to 7%;1990-1993, 0 to 4%; and, since 1994: 4 to 6%.</td>
</tr>
<tr>
<td>Southwest1</td>
<td>-1.1% (95% CI -5.4 to +2.4%) 1995 – 2000 (Runge et al. 2004)</td>
<td>1364 (FWC Manatee Synoptic Aerial Surveys 2009)</td>
<td>0.60 (95% CI 0.42 – 0.75) 1993 – 1997 (Koelsch 2001)</td>
<td>0.908 SE 0.019 1995 – 2000 (Langtimm et al. 2004)</td>
<td>Estimated conditional, annual reproductive rate based on warm weather data from Sarasota Bay only, may not be representative of other regions.</td>
</tr>
</tbody>
</table>

1Parameter estimates for the Southwest have broader confidence intervals than those for the other management units. This is due to a number of factors, including: fewer years of photo-identification monitoring data, turbid water making photography difficult, and warmer weather in the south reducing the number of cold days when manatees are available for photography. Nonetheless, the current parameter estimates are the first published for this region and therefore reflect the best available information. More reliable information is expected for this management unit as geographic coverage, sample size, and years of study increase over time.
Table 2. All manatee deaths (number of deaths, percent of annual total), 2003-2007. (Source: FWC FWRI Manatee Mortality Statistics 2008)

<table>
<thead>
<tr>
<th>Year</th>
<th>Human-caused Mortality</th>
<th>Perinatal</th>
<th>Cold Stress</th>
<th>Other(^2)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>85 (22%)</td>
<td>72 (19%)</td>
<td>48 (13%)</td>
<td>178 (46%)</td>
<td>383</td>
</tr>
<tr>
<td>2004</td>
<td>76 (27%)</td>
<td>72 (26%)</td>
<td>52 (18%)</td>
<td>82 (29%)</td>
<td>282</td>
</tr>
<tr>
<td>2005</td>
<td>94 (24%)</td>
<td>89 (22%)</td>
<td>29 (7%)</td>
<td>186 (47%)</td>
<td>398</td>
</tr>
<tr>
<td>2006</td>
<td>96 (23%)</td>
<td>70 (17%)</td>
<td>21 (5%)</td>
<td>233 (55%)</td>
<td>420</td>
</tr>
<tr>
<td>2007</td>
<td>82 (25%)</td>
<td>59 (18%)</td>
<td>19 (6%)</td>
<td>162 (50%)</td>
<td>322</td>
</tr>
<tr>
<td>TOTAL</td>
<td>433 (24%)</td>
<td>362 (20%)</td>
<td>169 (9%)</td>
<td>841 (47%)</td>
<td>1805</td>
</tr>
</tbody>
</table>

\(^1\)Numbers include reported, dead manatees that were salvaged and confirmed/verified carcasses that were not salvaged (included in "Other").

\(^2\)Includes known and/or suspected red tide deaths, including 96 in 2003, 92 in 2005, 62 in 2006, and 38 in 2007.

<table>
<thead>
<tr>
<th>Year</th>
<th>Crab trap(s) and associated gear</th>
<th>Net(s) and associated gear</th>
<th>Fishing line, tackle, and associated gear</th>
<th>Rope and miscellaneous marine debris</th>
<th>Total no. of deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>2004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>2006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

5-Year Avg. 0.00 0.40 1.20 0.40 2.00

Note: numbers only include reported dead manatees that were salvaged. Numbers do not include reported, dead manatees that were not salvaged.

<table>
<thead>
<tr>
<th>Year</th>
<th>Crab trap(s) and associated gear</th>
<th>Net(s) and associated gear</th>
<th>Fishing line, tackle, and associated gear</th>
<th>Rope and miscellaneous marine debris</th>
<th>Total no. of rescues</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rescues</td>
<td>Assist and Releases</td>
<td>Rescues</td>
<td>Assist and Releases</td>
<td>Rescues</td>
</tr>
<tr>
<td>2003</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2004</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>2005</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2006</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>2007</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>TOTAL</td>
<td>9</td>
<td>26</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5-Year Avg.</td>
<td>1.80</td>
<td>5.20</td>
<td>0.20</td>
<td>0.80</td>
<td>0.40</td>
</tr>
</tbody>
</table>

Note: numbers only include reported, distressed manatees that were either rescued or assisted and released. Numbers do not include reported, distressed manatees that were not rescued.
WEST INDIAN MANATEE (*Trichechus manatus*)
PUERTO RICO STOCK
(*Antillean subspecies, Trichechus manatus manatus*)

U.S. Fish and Wildlife Service, Caribbean Field Office, Boquerón, Puerto Rico

STOCK DEFINITION AND GEOGRAPHIC RANGE

Manatees belong to the Order Sirenia with two known families. Family Dugongidae is represented by the extant genera *Dugong* that is found in the Indo-Pacific region and the extinct genera *Hydromalis* the only member of the order adapted to cold water. Family Trichechidae is represented by one genus *Trichechus* and three species: *T. senegalensis*, the West African manatee, *T. inunguis*, the Amazonian manatee, and *T. manatus*, the West Indian manatee. The West Indian manatee is distributed in Caribbean coastal areas and river systems from Virginia, USA to Espíritu Santo, Brazil (Shoshani 2005).

Hat (1934) recognized two *T. manatus* subspecies: the Antillean manatee (*Trichechus manatus manatus*) and the Florida manatee (*Trichechus manatus latirostris*). Domning and Hayek (1986) tentatively divided the West Indian manatee into the Florida manatee *T. m. latirostris* and the Antillean manatee *T. m. manatus* based on cranial characters. They suggested that such subspeciation may reflect reproductive isolation brought on by the temperate northern coast of the Gulf of Mexico and characteristically strong currents found in the Straits of Florida.

Garcia-Rodriguez et al. (1998) compared mitochondrial DNA (mtDNA) from eight locations of *T. manatus* and found that despite the sharing of sixteen haplotypes (a segment of DNA containing closely linked gene variations that are inherited as a unit) among these locations, there was a strong geographic structuring of mtDNA diversity in three sites: Florida and the West Indies, the Gulf of Mexico to the Caribbean rivers of South America, and the northeast Atlantic coast of South America; units which are not concordant with the previous sub-species designations. Vianna et al. (2005) studied 291 samples mtDNA from the four Sirenia species, including samples of *T. manatus* from 10 countries. Colombia has the highest diversity of haplotypes with eight, while Puerto Rico has three haplotypes and the Dominican Republic only has two. Although Puerto Rico and the Dominican Republic share haplotype A with Florida, Vianna et al. (2005) found a high differentiation between the manatees in Florida, and the manatees in the Dominican Republic and Puerto Rico.

Slone et al. 2006 indicates that haplotype (mitochondrial DNA) distribution is further geographically divided in Puerto Rico. For example, only the A haplotype (haplotype also unique to Florida) was found along the north of the island and B haplotype was observed from the south shore. The authors found a mixture of A and B haplotype located along the eastern and western ends of the island, suggesting mixing between the south and north groups. Furthermore, the mitochondrial DNA is maternally inherited and is not reflective of the additional gene flow from males. Radio-tagging techniques in Puerto Rico have documented general behavior of manatee populations, in which males seem to move more extensively than females (Slone et al. 2006). Males may travel hundreds of kilometers while mother/calf distribution patterns could be more restricted. The authors state that if male movements are made during the breeding season, then relatively healthy mixing between geographical areas established by females might be expected. Further research by Kellogg (2008) indicates that nuclear DNA subpopulation separation was not as severe, suggesting that the manatees in Puerto Rico do travel and breed throughout the population to some degree.

The Antillean manatee is found in eastern Mexico and Central America, northern and eastern South America, and in the Greater Antilles (Lefebvre et al. 1989). It inhabits riverine and coastal systems in the subtropical Western Atlantic Coastal Zone from the Bahamas to Brazil, including the Gulf of Mexico. The distribution of the Antillean manatee extends eastward only to Puerto Rico, except for one 1988 report in St. Thomas, U.S. Virgin Islands; however, transient animals are know to occur in the Lesser Antilles (Lefebvre et al. 2001).

Genetically, the Puerto Rico population is isolated from the Florida manatee and has an additional haplotype when compared to the Dominican Republic. Antillean manatees occur around Hispaniola. While only a 90-mile stretch separates the two islands, manatee sightings have only occurred in areas close to the coast in Puerto Rico. The prevailing winds and currents are mostly from the northeast. This possibly creates a barrier to regular migration. Mona Island is located mid-way between Hispaniola and Puerto Rico. Extensive studies of Taíno Indian archeological evidence did not reveal manatee bones, suggesting that manatees were not readily available as a food item here. Additionally, threats by commercial and artisanal fisheries and conservation efforts are different between islands. For these reasons, we have made a determination to treat the Puerto Rico population of the Antillean manatee as a separate stock.

309
Powell *et al.* (1981) describes the manatee population in Puerto Rico as small and widely distributed. Rathbun *et al.* (1985) states that the population of manatees in Puerto Rico was not even and that distribution did not vary from 1976-78, when Powell conducted his studies. All studies suggest that manatees in Puerto Rico are most often detected in protected areas around cays, in secluded bays and shallow seagrass beds east of San Juan, the east, south, and southwest coasts, and not far from fresh water sources. The manatees are most consistently detected in two areas: Jobos Bay area between Guayama and Salinas, Fajardo and Roosevelt Roads Naval Station, Ceiba (Powell *et al.* 1981; Rathbun *et al.* 1985; Freeman and Quintero 1990; Mignucci-Giannoni *et al.* 2004; US Fish and Wildlife Service 2007, USFWS unpublished data 2007). Manatees are not abundant on the north coast, although they are seen in areas immediately to the west of San Juan (Powell *et al.* 1981; Mignucci-Giannoni 1989).

Five offshore islands are the most significant biogeographic features in Puerto Rico: (west to east) are Desecheo, Mona, Caja de Muertos, Culebra, and Vieques islands (Figure 1). Manatees have not been detected in the first three. Manatees have not been seen in the Mona Passage or Mona Island, 45 miles west of Puerto Rico. This passage may constitute a migratory barrier to the area since it is permeated by a strong east to west current and high surfs. Although there is available habitat in Caja de Muertos Island, manatees have not been detected by any of the authors suggesting they prefer available habitat closer to the coast. The island lacks fresh water, and easterly strong currents and high surf are prevalent between Caja de Muertos and the south coast of Puerto Rico that may hinder traveling to this island. Vieques Island seems to be within the range of the species (14 miles) and manatees have been seen traveling to and from the east coast (Magor 1979). This suggests that the manatees in Vieques may be a subset of the east coast populations as increased numbers were detected from the east coast and there were often decreased detection around Vieques and vise versa. Manatees have been reported irregularly in Culebra Island through the years; the individuals usually staying only for a couple of weeks. In 2006, a 5-foot manatee was photographed close to Tamarindo Beach on the east side of Culebra (Teresa Tallevast 2006 pers. com.). Although Culebra Island has available habitat, it lacks fresh water, which may hinder longer stays by manatees. The U.S. has jurisdictional responsibilities for the Antillean subspecies only in Puerto Rico and the U.S. Virgin Islands.

![Figure 1. Geographical distribution Antillean Manatee in Puerto Rico](image)

POPULATION SIZE

Barrett (1935) suggests that in pre-columbian times manatees in Puerto Rico were so plentiful along the coast, swamps, and bayous that the Spaniards gave the Arawak name Manati to a locality. He noticed that when he visited the island that silting-up of the waters behind the town of Manati drove the manatees out to sea. Evermann (1900) describes the manate in Puerto Rico as rare. Erdmann (1970) describes that manatees were rare around Puerto Rico and absent from the Virgin Islands. In the absence of replicable population estimates, it is unclear if population size was greater in the past than today. Manatees are seen in groups of up to 8 individuals but never in large aggregations. With 350 miles of coastline and fresh water readily available, manatees appear to exploit most protected nearshore shallow bays and coves and move between sites. This makes them more difficult to detect from shore or during
surveys.

Minimum Population Estimate

Deutsch et al. (2007) estimated the population levels of mature Antillean manatees at 2,600 in all of the 41 countries of the wider Caribbean but, optimistic ‘estimates’ from researchers and peers suggests the it may actually be in the range of 5,600 individuals. Deutsch et al. (2007) describes the population size in Puerto Rico at a minimum of 128 with a projected population estimate of 300. The exact number of Antillean manatees known to occur in Puerto Rico is unknown. Aerial surveys have been used to obtain distribution patterns or determine minimum population counts in some areas (Magor 1979, Rice 1990, and Mignucci-Giannoni et al. 2003, 2004) or throughout the island (Powell et al. 1981; Freeman and Quintero 1990; Rathbun et al. 1985; USFWS 2007 unpublished data). Each survey was different, with surveys conducted several months in various years, surveys every month for a year, and surveys of unequal number of months for 12 years. In spite of the high variability between and within surveys, the data can be used to determine the highest number of manatees sighted within a time period (one island survey).

Powell et al. (1981) detected an average of 22.6 manatees during ten surveys with the highest count of 51. They found that manatee population in Puerto Rico appears to be small and widely distributed. Rathbun et al. (1985) determined that manatees sighted per survey averaged 43.6 (S.D. = 13.1) with a minimum count of 20 and a maximum of 62, higher than previously reported. The Service conducted 23 aerial surveys from 1991 to 2002 and one survey in 2009. The average number of manatees sighted was 67 (S.D. = 20) per survey, with a high of 117, a low of 22. The average number of adults was 63.40 per survey and calf numbers averaged 4.72 per survey. The 2009 survey counted a total of 72 manatees, including 64 adults and eight calves. We have determined 72 is the most current minimum population estimate for the Puerto Rico stock of the Antillean manatee.

Current Population Trends

Quantitative information is limited regarding trends in the abundance of the Antillean manatee in Puerto Rico and the U.S. Virgin Islands. In Puerto Rico, Deutsch et al. (2007) describes the manatee as stable. USFWS (2007) also suggests that the Puerto Rico population of the West Indian manatees is at least stable and possibly slightly increasing due to increasing numbers detected in annual surveys. Plotted data from all surveys through time suggest an increase in detection in spite of differences in observer experience (Figure 2). Detection conditions varied between surveys and within surveyed areas mostly due to heterogeneous habitats. However, since mass mortality and numbers of stranded/dead manatees have not exceeded 13 per year (Mignucci-Giannoni 2006, DNER 2009 unpublished data), high variability between surveys may be related to detection rather than actual numbers of manatees.

The mean number of manatees per survey increased from 22.6 manatees (Powell et al. 1981) to 43.6 manatees per survey (Rathbun et al. 1985). From 1994 to 2009, surveys produced a mean of 68.12 manatees per survey. The proportion of calves detected per survey was about the same with 6.4% in 1979-1980 (Powell et al. 1981), 7.6% in 1984-1985 (Rathbun et al. 1985), and 6.9% in 1991–2009. In 2009, seven years since the 2002 survey, one synoptic survey detected a total of 72 manatees sighted, eight of which were calves; this figure is closer to the average detection levels of previous surveys. Although the average manatee sighted per survey has increased by about 40% since 1985, the average number of manatees per surveys has been maintained relatively stable since 1991.
Figure 2. Synoptic Aerial Surveys Puerto Rico Stock of Antillean Manatee

Efforts to quantify population levels and trends are ongoing as part of a cooperative agreement between North Carolina State University, Puerto Rico’s Department of Natural and Environmental Resources (DNER), and the U.S. Fish and Wildlife Service, Caribbean Field Office. The cooperators will conduct aerial surveys and develop a statistically robust population model incorporating factors such as detection probability of manatees in heterogeneous habitats.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

The Marine Mammal Protection Act (MMPA) defines net productivity rate as “the annual per capita rate of increase in a stock resulting from additions due to reproduction, less losses due to natural mortality.” Since 1994 to 2009, an average of 63.22 adults and 4.96 calves has been reported from synoptic surveys. Mignucci-Giannoni (2006) reports that 23.9% of all mortality detected were those of dependent calves. For instance, in 2002, aerial surveys detected 6 calves, while mortality records only show 1 dependent calf. At present, we do not have clear data on recruitment; however, based on previously reported data, the mortality rates of dependent calves from natural causes remains the same. Similarly, the natural death for all ages remains at about 43%. The number of calves detected per year has not changed dramatically and they usually are in concordance to the total number of sightings. However, in the absence of a statistical value on net productivity rates we have followed the recommendation of using a 0.04 value for manatees and cetaceans (NMFS 2005).

POTENTIAL BIOLOGICAL REMOVAL

The West Indian manatee is federally listed as endangered. The Service has recent survey data, which indicate the Puerto Rico stock of the West Indian (Antillean manatee) is relatively stable.

The potential biological removal (PBR) formula was developed during the 1994 amendments to the MMPA as a tool to reduce incidental commercial fisheries-related marine mammal mortalities and serious injuries to insignificant levels. PBR is the product of three elements: the minimum population estimate (Nmin), half of the maximum net productivity rate (0.5 Rmax), and a recovery factor (F). Recovery factor values range between 0.1 and 1.0 and population simulation studies demonstrate that a default value of 0.1 should be used for endangered (depleted) stocks and a default value of 0.5 should be used for threatened stocks or stocks of unknown status (NMFS 2005).

The recovery factor for the Puerto Rico stock of the Antillean manatee should be between 0.1 and 0.5. Though the population is stable, the default value of 0.1 is used due to the small size of the population and the current endangered status. Given a minimum population estimate of 72 and an Rmax of 0.04 (because it is unknown) the PBR for Puerto Rico stock of the Antillean manatees is as follows:
\[
PBR = (N_{\text{min}}) \left(\frac{1}{2} \text{ of } R_{\text{max}} \right) (F_r)
\]

\[
N_{\text{min}} = 72 \\
R_{\text{max}} = 4.0\% \\
F_r = 0.1
\]

\[
PBR = (72) (0.02) (0.1) = 0.144 \text{ (or 0)}
\]

HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

Rescues

From 1990 to 2005 a total of 23 manatees were rescued by the Caribbean Stranding Network (CSN) (Mignucci-Giannoni 2006). Of these, 21 were calves; one was a sub-adult and one an adult. Two were rehabilitated and released, two were released immediately after rescue, 17 died in rehabilitation, and one died in transport, and one is currently in rehabilitation. Of the four manatees that were released, only one has died; one year after its release. Since 2005, only two manatees were rescued, one adult died in transport and a calf was in rehabilitation at the Juan A. Rivero Zoo in Mayaguez for almost a year. This manatee died in July 2009 due to an intestinal infection. An average of 1.4 calves is rescued every year, but most have died due to illness (Mignucci-Giannoni 2006; DNER 2009 unpublished data).

Mortality

Carassalvaige efforts were initiated in April 1974 by the Service and local entities and continued through 1989. The CSN then initiated a dedicated salvage, rescue, and rehabilitation program, assuming responsibility for all carcass recovery efforts in Puerto Rico. Currently, carcass salvage efforts are performed by DNER. From 1990 through 2008, a total 130 manatees have been found dead (Mignucci-Giannoni 2006; DNER 2009 unpublished data).

There is no record in Puerto Rico of serious injury to manatees by propellers, except the mortality of a mating herd impacted by a big vessel in 2006. In Puerto Rico, single Antillean manatee strandings are the rule. Only one multi-individual manatee death was recorded in 2006 when 5 adult individuals, 4 males and one female, were impacted by a big vessel in San Juan Bay. Unlike Florida, mass mortality does not occur in Puerto Rico since the etiological cause, red tide, or need for warm water habitats do not present an issue to a coastal tropical marine species. Moreover, except for mating herds, manatee groups detected during aerial surveys are small, mostly single sightings or 2-3 individuals (e.g., mother, year calf, and immature adult).

<table>
<thead>
<tr>
<th>Year</th>
<th>Natural</th>
<th>Human</th>
<th>Undetermined</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dependent Calves/Perinatal</td>
<td>Illness</td>
<td>Watercraft</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>2005</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2006</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>2007</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>2008</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Totals</td>
<td>11 (27%)</td>
<td>7 (17%)</td>
<td>9 (22%)</td>
<td>14 (34%)</td>
</tr>
<tr>
<td>5-Year Avg.</td>
<td>2.2</td>
<td>1.4</td>
<td>1.8</td>
<td>2.8</td>
</tr>
</tbody>
</table>

During the 2004-2008 period a total of 41 manatees were reported dead (Table 1). Natural Causes comprised most of reported cases 18 (44%) while watercraft related death were 9 (22%). In most cases, manatees are killed by a blunt trauma to the head, which produces an internal hemorrhage and subsequent death. In 2006, an unusual manatee death was reported when a mating heard was impacted by the propellers of a big vessel. Other than this event, necropsies did not report propeller marks like in Florida. The cause of death in most cases, i.e., 14, was deemed as Undetermined (34%). The Undetermined cause of death (COD) category means that assessment of a
natural or human related cause was negative (no evidence that COD can be assigned to any of the available categories, either natural or human related).

In most cases, the reporting of a stranded manatee takes days. Warm water and remote locations of stranding may hinder recovery of manatee carcasses, making it difficult to conduct a timely determination of mortality. The DNER’s Marine Mammal Stranding Program has developed a protocol to report and quickly act on marine mammal strandings, mostly manatees. This program is institutionalized and first responders are usually DNER rangers that have the mandate and capacity to quickly act to increase detection and prevent death of animals. Because of this system, the number of strandings currently reported by DNER may help to provide a better estimate of manatee mortality in Puerto Rico. We will continue to support their efforts to determine if this mortality trend continues and what relationship it has to other population parameters.

Until the mid 1980’s, some coastal families captured manatees for special events. Manatees were captured in gill and/or turtle nets purposely or inadvertently during fishing activities. Mignucci-Giannoni et al., (1993) indicates that from 1974 until 1988, 41.5 percent of the documented mortality was attributed to poaching. He indicated that meat was sold to ready buyers, although the extent to which this occurred was unknown. After the rescue of a baby manatee in 1991, and subsequent media uproar because its mother was poached, capture by fisherman has been virtually eliminated.

Fisheries

The fisheries in the U.S. Caribbean are multi-species, multi-gear, artisanal in nature, and principally coral reef-based (NOAA 2004). Boats used are wooden or fiberglass, 17-21 feet long. Traps are the most common used gear but line is almost as common now. Traps are deployed in the shallow nearshore zone around coral reefs in algal plains, sand, and seagrass beds but, not on top of corals at depths ranging from 20-62 meters. Among fishers, 68% use buoys to mark the trap line and 32% use none at all. Matos-Carballo (2004) reported that, of interviewed commercial fishers, 36% were full time and 64% part time fishers. A total of 17% fished in the shore, 83% on the continental shelf. Within gears, 5% use beach seines, 36% gillnets, 14% trammel, and 45% used cast nets.

Seventeen species of marine mammals have been described from Puerto Rican and U.S. and British Virgin Island waters (Mignucci-Giannoni 1989). However, NOAA (2004), reports that the commercial and recreational fisheries under jurisdiction of the Caribbean Council are listed as Category III fisheries, the category with the lowest level of serious injury and mortality to marine mammals. The two Category III commercial fisheries that have been identified in NMFS’ “2009 List of Fisheries” (73 FR 73032; December 1, 2008) as known to take Antillean manatees are the Caribbean gillnet, which involves more than 991 vessels/persons and the Caribbean haul/beach seine fishery, which involves 15 vessels/persons. However, neither the DNER nor the Service has data to support that there is take by these commercial/artisanal fisheries, including entanglement with fishing gear, collisions with fishing vessels, and bycatch.

In the past, the carcass recovery program described few fisheries interaction incidents with manatees and several reports were anecdotal. Nets have been banned altogether in the U.S. Virgin Islands except for shallow small nets for bait fish. In Puerto Rico Regulation 678 of the 2004 Fisheries Law have prohibited some types of nets and limit the deployment and size of others. All haul/beach seine nets have been prohibited in Puerto Rico. Gill and trammel nets have been prohibited from use in river mouths, rivers and lagoons (DNER 2004). Mesh size should not be less than 2 inches or more than 6 inches when stretched. This measure, although targeted to prevent sea turtle poaching, may further prevent the accidental entanglement of manatees. Commonwealth, NMFS and Service law enforcement measures currently in place are curtailing turtle poaching with a positive effect to manatees. We believe that fisheries interactions, either intentional or accidental, may not significantly affect the status of the Puerto Rico stock of the Antillean manatee. We acknowledge that there may be limits to the data available because, although unlikely, it is possible take could occur and may not be observed or reported. However, protocols for necropsies and assigning probable cause of death categories are reviewed thoroughly. Table 1 of this SAR shows watercraft as the only human related deaths. The only possible evidence for commercial fisheries interaction would be within the 34% undetermined COD category. In addition, we believe that manatees injured by commercial fisheries interactions would most likely present signs of the activity and every necropsy includes a specific evaluation of human interactions. From 1990-2008, only one manatee had a COD potentially related to commercial fisheries interaction. In 2006, one freshly dead manatee was found with its right flipper entangled in monofilament; however the COD was undetermined. In accordance with the previous statements and the presence of current bans and restrictions in place prohibiting the use of nets, the Service believes that incidental mortality and serious injury related to commercial fisheries in Puerto Rico and the U.S. Virgin Islands should be considered minimal or approaching zero.

STATUS OF STOCK

The West Indian manatee is listed as endangered under provisions of the Endangered Species Act of 1973 (16 U.S.C. 1531 et seq.), as amended and a Recovery Plan developed in 1986 for the Puerto Rico population of the Antillean subspecies (USFWS 1986). As an endangered species, the Puerto Rico stock of Antillean manatees is
considered a strategic stock and depleted as defined in Section 3(19) of the Marine Mammal Protection Act of 1972, as amended.

We currently do not have sufficient information on the Puerto Rican manatee population to determine the Optimum Sustainable Population (OSP). The Antillean manatee is not impacted by cold spells and red tide like Florida manatees and it is mostly a coastal species. This precludes the use of Florida data on survival rates and reproduction to reach an OSP.

The main threats to the species in Puerto Rico are watercraft collisions and habitat degradation (e.g., marine construction activities, propeller scarring on sea grass beds, impacts on sea grass beds related to anchoring, oil spills, and availability of fresh water sources). A number of mechanisms are in place to lessen the impact of these factors. There is a strong outreach and education effort and a gill net prohibition in place. Most development activities within the water are reviewed by the Corps of Engineers and the Service based on provisions in the Endangered Species Act and the Marine Mammal Protection Act. Therefore, the U.S. Fish and Wildlife Service, when engaged in consultation under the ESA related to manatees, will provide recommendations to consulting agencies to avoid a take.

REFERENCES CITED

INDEX

Antillean manatee, 309, 311, 312, 313, 314, 315
drift gillnet, 14, 25, 44, 53, 61, 84, 86, 101, 233
drifty gillnet, 14, 25, 23, 32, 44, 45, 48, 49
dwarf sperm whale, 2, 6
dwarf sperm whale, 2, 6
ecotype, 136
ecotype, 136
entanglement, 7, 13, 14, 24, 44, 45, 46, 48, 55, 66, 87, 99, 103, 106, 134, 138, 174
Entalacticus glacialis, 2, 7, 9, 10, 13, 14, 15, 16, 24, 37, 39
false killer whale, 6
false killer whale, 6
Feresa attenuata, 2, 6
fin whale, 2, 31, 32, 33, 35, 37, 133
Florida, 9, 14, 44, 51, 52, 59, 65, 99, 111, 162, 169
Florida, 9, 14, 44, 51, 52, 59, 65, 99, 111, 162, 169
Florida manatee, 295, 296, 299, 300, 301, 302, 303
foreign fishing, 45, 62, 63, 84, 86, 103
Globicephala macrorhynchus, ii, iii, 7, 8, 58, 65, 68, 71, 72, 73, 77, 78, 80, 188, 191
Globicephala melas, 58, 61, 63, 65, 66, 67
Grampus griseus, 51, 54
grey seal, 5, 112, 114, 115, 118, 119, 120, 121, 122, 123
Great South Channel, 9, 16, 37, 61
groundfish, 14, 24, 45, 63, 86, 101, 103, 104, 105, 113, 121
groundfish, 14, 24, 45, 63, 86, 101, 103, 104, 105, 113, 121
Gulf of Mexico, v, 1, 5, 6, 7, 8, 9, 42, 51, 53, 62, 132, 133, 134, 135, 136, 137, 138, 139, 140, 156, 161, 162, 168, 169, 172, 173, 174, 175, 201, 233
Gulf of St Lawrence, 21
Gulf of St. Lawrence, 9, 20, 22, 23, 32, 38, 43, 52, 59, 72, 82, 83, 92, 99, 100, 104, 109, 110, 112, 113, 118, 121, 123, 125, 216, 282, 283, 291
Gulf Stream, 51, 52, 58, 59
gunshot wounds, 139
Halichoerus grypus, 5, 112, 114, 115, 118, 119, 120, 121, 122, 123
harbor porpoise, 5, 8, 65, 99, 100, 101, 102, 103, 104, 105, 107, 113, 120, 127
harbor seal, 5, 48, 111, 112, 113, 114, 115, 122, 126
harp seal, 5, 8, 125, 126, 127, 128, 129
herring weirs, 14, 45, 87, 103, 105, 113, 121
hooded seal, 5, 8
humpback whale, 2, 7, 20, 21, 22, 23, 24, 25, 28, 31
hunting, 114, 119, 122, 125
Hyperoodon ampullatus, 2

Indian River Lagoon, 4, 157, 164, 170, 227, 228

killer whale, 2, 6
Kogia breviceps, 2, 7
Kogia sima, 2, 6

Lagenorhynchus acutus, 3, 65, 82, 83, 84, 85, 86, 87, 89
Lagenorhynchus albirostris, 3
Long Island, 44, 112

long-finned pilot whale, 58, 61, 63, 65, 66, 67
longline fishery, 44, 134, 138, 174, 233

mackerel, 21, 28, 45, 53, 61, 62, 74, 84, 93, 104
Maine, 9, 14, 20, 21, 22, 23, 24, 25, 28, 37, 44, 59, 82, 100, 105, 107, 111, 112, 114, 118, 120, 122, 125
manatee, v, 147, 220, 295, 296, 297, 298, 299, 300, 301, 302, 303, 305, 307, 309, 310, 311, 312, 313, 314, 315, 316
mark-recapture, 22, 23, 125
Massachusetts, 9, 16, 21, 31, 39, 48, 63, 75, 111, 118, 122
Megaptera novaeangliae, 2, 7, 20, 21, 22, 23, 24, 25, 28, 31
melon-headed whale, 3, 7
Mesoplodon beaked whales, 7
Mesoplodon spp., 7
metals, 67, 99
minke whale, 2, 7, 42, 43, 44, 45, 48, 49
mutilation, 138

Netherlands Antilles, 177, 183, 188, 193
New England, 9, 14, 21, 31, 42, 44, 45, 53, 61, 62, 74, 93, 102, 103, 107, 111, 112, 113, 114, 118, 120, 122
New Jersey, 28, 99, 112, 125
New York, 44, 61, 74, 84, 99, 107, 111
North Carolina, 9, 21, 28, 52, 58, 59, 61, 65, 74, 82, 84, 99, 105, 107, 122, 220
northern bottlenose whale, 2

Orcinus Orca, 2, 6

Pagophilus groenlandica, 5, 8, 125, 126, 127, 128, 129
pair trawl, 53, 61, 63, 85, 86, 94, 95, 114
Panama, 149, 152, 162, 177
panropical spotted dolphin, 3, 6, 172, 173, 174, 175
PCBs, 67, 99
Peponocephala electra, 3, 7
Phagophilus groenlandicus, 125
Phoca vitulina, 5, 48, 111, 112, 113, 114, 115, 122, 126

Phocoena phocoena, 5, 8, 65, 99, 100, 101, 102, 103, 104, 105, 107, 113, 120, 127
photo-identification, 10, 11
pinger, 86, 105, 113
Plymouth, 10
polychlorinated biphenyls, 67
population growth rate, 11, 13, 23
Pseudorca crassidens, 6
Puerto Rico, ii, iii, 7, 21, 65, 66, 77, 78, 177, 178, 179, 180, 181, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 207, 295, 309, 310, 311, 312, 313, 314, 315, 316
pygmy killer whale, 2, 6
pygmy sperm whale, 2, 7

right whale, 2, 7, 9, 10, 13, 14, 15, 16, 24, 37, 39
Risso’s dolphin, 51, 54

salmon gillnets, 45, 63, 113, 121
Sargasso Sea, 269, 270, 271, 272, 273
Scotian Shelf, 9, 20, 22, 37
sei whale, 2, 37, 38, 39, 40
shark, 115, 233
ship strikes, 7, 13, 14, 15, 24, 25, 44, 46
short-finned pilot whale, v, 7, 8, 58, 65, 66, 67, 71, 73, 77, 78, 79, 80, 188, 189, 191, 203, 204, 210, 212, 213, 214, 218
shrimp, 156, 161, 168, 206, 210, 212, 222, 224
sink gillnet, 44, 53, 54, 84, 86, 93, 101, 102, 103, 104, 105, 107, 113, 114, 120, 121, 127, 128, 233
South Carolina, 53, 62, 65
Sperm whale, 182, 197
spinner dolphin, v, 4, 6, 193, 194, 195
squid, 53, 61, 62, 74, 93
St. Joseph Bay, 159
Stellwagen Bank, 21, 37, 44
Stenella attenuata, 3, 6, 172, 173, 174, 175
Stenella clymene, 4, 6
Stenella coeruleoalba, 3, 6
Stenella frontalis, 3, 6, 172, 175
Stenella longirostris, 4, 6
Strait of Belle Isle, 10
striped dolphin, 3, 6
swordfish, 134, 138, 174, 218, 223, 225
take reduction plan, 102
telemetry, 9
Texas, 135, 162, 169
tunas, 44, 61, 62, 134, 138, 174
Tursiops truncatus, 4, 5, 6, 8, 65, 136, 137, 138, 139, 140, 154, 159, 162, 166, 169, 221

Vieques, 179, 180, 185, 190, 195, 200
Virgin Islands, ii, iii, 7, 177, 178, 179, 181, 183, 184, 187, 188, 189, 190, 191, 192, 193, 194, 196, 197, 198, 199, 201, 202, 207
Virginia, 207, 217, 221, 222
West Indian manatee, 309
white-beaked dolphin, 3

Ziphius cavirostris, ii, 183, 186

white-sided dolphin, 3, 65, 82, 83, 84, 85, 86, 87, 89