POWDER CONTRAIL GENERATION

BACKGROUND

The present invention relates to method and apparatus for contrail generation and the like. An earlier known method in use for contrail generation involves oil smoke trails produced by injecting liquid oil directly into the hot jet exhaust of an aircraft target vehicle. The oil vaporizes and recondenses being the aircraft producing a brilliant white trail. Oil smoke trail production requires a minimum of equipment; and, the material is low in cost and readily available. However, oil smoke requires a heat source to vaporize the liquid oil and not all aircraft target vehicles, notably towed targets, have such a heat source. Also, at altitudes above about 25,000 feet oil smoke visibility degrades rapidly.

SUMMARY

The present invention is for a powder generator requiring no heat source to emit a “contrail” with sufficient visibility to aid in visual acquisition of an aircraft target vehicle and the like. The term “contrail” was adopted for convenience in identifying the visible powder trail of this invention. Aircraft target vehicles are used to simulate aerial threats for missile tests and often fly at altitudes between 5,000 and 20,000 feet at speeds of 300 and 400 knots or more. The present invention is also suitable for use in other aircraft vehicles to generate contrails or reflective screens for any desired purpose.

The powder contrail generator is normally carried on an aircraft in a pod containing a ram air tube and powder feed hopper. Powder particles, surface treated to minimize interparticle cohesive forces are fed from the hopper to a deagglomerator and then to the ram air tube for dispensing as separate single particles to produce a contrail having maximum visibility for a given weight material.

Other object, advantages and novel features of the invention will become apparent from the following detailed description of the invention when considered in conjunction with the accompanying drawing.

DESCRIPTION OF DRAWING

FIG. 1 is a schematic sectional side-view of a powder contrail generator of the present invention.

DESCRIPTION OF PREFERRED EMBODIMENT

The powder contrail generator in pod 10, shown in FIG. 1, is provided with a powder feed hopper 12 positioned in the center section of the pod and which feeds a powder 13 to a deagglomerator 14 by means of screw conveyors 16 across the bottom of the hopper. The deagglomerator 14 produces two stages of action. In the first stage of deagglomeration, a shaft 18 having projecting radial rods 19 in compartment 20 is rotated by an air motor 21, or other suitable drive means. The shaft 18 is rotated at about 10,000 rpm, for example. As powder 13 descends through the first stage compartment 20 of the deagglomeration chamber, the hammering action of rotating rods 19 serves to aerate and deagglomerate the powder before the second stage of deagglomeration of the powder. The N₂, or other suitable gas, is provided from storage tanks 25 and 26, for example, in the pod.

The jet mill 22 operates in a similar manner to commercial fluid energy mills except that there is no provision for recirculation of oversized particles. Tests with the deagglomerator show that at a feed rate of approximately 1½ lb/min, treated titanium dioxide powder pigment is effectively dispersed as single particles with very few agglomerates evident.

The nitrogen gas stored in cylinder tanks 25 and 26 is charged to 1800 psig, for example. Two stages of pressure reduction, for example, by pressure reduction valves 28 and 29, bring the final delivery pressure at the radial jets 24 and to the air motor 21 to approximately 120 psig. A solenoid valve 30 on the 120 psig line is connected in parallel with the electric motor 32 which operates the powder feeder screws 16 for simultaneous starting and running of the powder feed, the air motor and the jet mill deagglomerator.

Air enters ram air tube 34 at its entrance 35 and the exhaust from the jet mill deagglomerator passes directly into the ram air tube. At the deagglomerator exhaust 36 into ram air tube 34, an upstream deflector baffle 38 produces a venturi effect which minimizes back pressure on the powder feed system. The powder is then jetted from the exhaust end 40 of the ram air tube to produce a contrail. A pressure equalization tube, not shown, can be used to connect the top of the closed hopper 12 to the deagglomeration chamber 14. A butterfly valve could be provided at the powder hopper outlet 39 to completely isolate and seal off the powder supply when not in use. Powder 13 could then be stored in hopper 12 for several weeks, without danger of picking up excessive moisture, and still be adequately dispersed.

Preparation of the light scatter powder 13 is of a critical importance to production of a powder “contrail” having maximum visibility for a given weight material. It is essential that the pigment powder particles be dispersed as separate single particles rather than agglomerates of two or more particles. The powder treatment produces the most easily dispersed powder through the use of surface treatments which minimize interparticle cohesive forces.

Titanium dioxide pigment was selected as the primary light scattering material because of its highly efficient light scattering ability and commercially available pigment grades. Titanium dioxide pigment (e.g., Dupont R-931) with a median particle size of about 0.3μm has a high bulk density and is not readily aerosolizable as a submicron cloud without the consumption of a large amount of deagglomeration energy. In order to reduce the energy requirement for deagglomeration, the TiO₂ powder is specially treated with a hydrophobic colloidal silica which coats and separates the individual TiO₂ pigment particles. The extremely fine particulate nature (0.007 μm primary particle size) of Cabot S-101 Silanox grade, for example, of colloidal silica minimizes the amount needed to coat and separate the TiO₂ particles, and the hydrophobic surface minimizes the affinity of the powder for absorption of moisture from the atmosphere. Adsorbed moisture in respirable particles increases life.